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Abstract. This work develops new approximations for the exponential interpolation functions
which are used in power-law scheme (PLS) and WUDS. These approximations allow accurate
results for near zero grid Péclet numbers and reduce the scheme to upwind interpolation for a
Péclet number about 9. The computational cost of these functions is comparable to the usual
approximation used in PLS and is less expensive than the common approximations used in
WUDS. The solution of one-dimensional and two-dimensional convection-diffusion problems
are used to show the good convergence characteristics of the new approximations for the
interpolation functions. Questions concerning the usage of nonuniform grids and exponential-
based schemes with source term (WUDS-E, PLS-E and LOADS) are also addressed.

Keywords: Interpolation, Finite-volumes, Exponential schemes, Accuracy, Grid independence

1. INTRODUCTION

Finite-volume solutions of convection-diffusion problems are still dominated by
exponential-type interpolation functions. These schemes are indeed quite accurate for
diffusion dominated problems (low Péclet numbers) if the interpolation functions are used
without any approximation. However, the related computational cost is too expensive. Thus,
approximations are commonly used for the interpolation functions, as the Power-Law Scheme
(PLS) (Patankar, 1980) and the Weighted Upstream Differencing Scheme (WUDS) (Raithby
and Schneider, 1988). These approximations introduces additional errors which degrades the
solution accuracy, specially when one is trying to obtain benchmark solutions for convection-
diffusion problems, that is, when a grid independent solution is sought.

It is known that exponential schemes are not well suited for convective-dominated
problems (Leonard, 1997), because they revert to the upwind scheme for grid Péclet numbers
above 6 (Leonard and Drummond, 1995). Therefore, there is no point in trying to approximate
the exponential functions for P > 6. Thus, in this work, new functional approximations have
been developed which are very good near P = 0. This allows good convergence behavior for
the numerical schemes if another source of numerical error is absent.
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Figure 1 – One-dimensional grid.

2. FORMULATION OF EXPONENTIAL SCHEMES

Exponential schemes are based on the local exact solution of the one-dimensional steady
convection-diffusion equation. Its conservative form is given by Eq. (1).
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where x is the spatial coordinate, ρ is the fluid density, u is the velocity component in x
direction,  Γx is the diffusion coefficient for x direction, φ is the transported variable and S is a
source term which is required for some schemes. Equation (1) is integrated over a control
volume, giving for the grid shown in Fig. 1, the following flux-conservation equation:
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where the tilde indicates volume average. Equation (2) shows clearly the basic task in any
finite-volume scheme: the evaluation of convective and diffusive fluxes at cell faces.

The flux estimates are then obtaining by applying Eq. (1) locally between cell nodes,
considering ρ, u, Γx and S as constants conveniently evaluated at the cell boundary. In
dimensionless form, this gives the following boundary-value problem.
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where Bi+1/2 = [S/Γx]i+1/2 (δxi)
2, ξ = (x-xi)/δxi and Pi+1/2 = [(ρu)/Γx]i+1/2 δxi is the grid Péclet

number. The solution of Eq. (3) for φ and its derivative are given by
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If Eqs. (4) and (5) are evaluated at faces e (ξi+1/2) and w (ξi-1/2) the convective and
diffusive fluxes of Eq. (2) may be independently evaluated. However, it is possible to
combine both fluxes in the so-called convective-diffusive flux
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Substitution of Eqs. (4) and (5) into Eq. (7) gives the following expression for the
dimensionless flux, J*:
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where A is defined by
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From Eqs. (4), (5) and (8), it is clear that all fluxes depend on cell boundary location
(ξi+1/2). For an uniform grid, ξi+1/2 = ½, which is also commonly employed for nonuniform
grids. However, this is not strictly correct, because, for a second-order method, node values
should be located at cell baricenters in order to correspond to cell-average values.

Equation (8), with Bi+1/2 = 0, is the exponential scheme given by Patankar (1980), which
is truly independent on cell face location. Equations (4) and (5), with Bi+1/2 = 0, are the basis
of the WUDS (Weighted-Upstream Differencing Scheme) of Raithby &  Torrance (1974). For
Bi+1/2 given as a local approximation of other terms in a multidimensional convection-
diffusion problem, Eqs. (4) and (5) are the basis for the WUDS-E (Weighted-Upstream
Differencing Scheme-Extended) described by Maliska (1995) and for the LOADS (Locally
Analytic Differencing Scheme) of Wong &  Raithby (1979), which differ in the form of
evaluating Bi+1/2. They are also used in the UNIFAES (Unified Finite Approach Exponential-
type Scheme) of Figueiredo (1997).

3. FUNCTIONAL APPROXIMATIONS FOR INTERPOLATION FUNCTIONS

Since the computation of exponential functions are quite expensive, the common practice
is to use approximations for A(P) or for α(½,P) and β(½,P), assuming that ξ = ½ at cell
boundaries regardless of the grid. Thus, the ξ dependence will be dropped from now on.

3.1 Classical approximations

Raithby and Schneider (1988) have proposed the following approximations:
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The βc approximation satisfies the β(0) and β’(0) (first derivative) values but βc for P → ∞ is
quite different from β(∞), leading to errors above 20% for P > 5. Although the αc

approximation satisfies α(±∞) and α(0), it does not satisfies α’(0), which implies poor



convergence characteristics when one seeks a grid independent solution, because near P = 0,
the relative approximation error increases without bound.

Patankar (1980) proposed the following approximation for A(P) to be used with Eq. (8),
with Bi+1/2 = 0, originating the so-called power-law scheme (PLS).
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For P < 0, A is calculated from the property A(P) = A(|P|)+max(-P,0). Equation (11) is indeed
a very good approximation of Eq. (9), satisfying A(0) and A’(0) and truncating APL(P) to A(∞)
for P ≥ 10. The use of Eq. (8) with Bi+1/2 ≠ 0, calculated as in LOADS, together with Eq. (11)
can be defined as the Power-Law Scheme-Extended (PLS-E).

However, it is now well accepted that exponential schemes are not adequate for
convective-dominated problems (Leonard, 1997), and it is known that when an exponential
scheme uses Eqs. (4), (5) and (10) or (8) and (11), it implies the neglect of all physical
diffusion for P above about 6, that is, only the numerical diffusion remains in the scheme
(Leonard and Drummond, 1995). Although, this is a good approximation for one-dimensional
or quasi one-dimensional flows, it implies large amounts of cross-wind artificial diffusion for
multidimensional problems.

Therefore, exponential schemes cannot give good results for grid Péclet numbers above
about 6, and thus there is no point in trying to well approximate the exponential functions for
P > 6. On the other hand, the functional approximations must be very good near P = 0 when
grid-independent results are sought, or the error in approximating the interpolation function
will dominated the overall numerical error.

3.2 New functional approximations

Good functional approximations around P = 0 can be obtained through Taylor series
expansions around this point. These series can also be converted to continued fractions, which
are sometimes implemented more efficiently. This issue will be seen in the next subsection.

Consider the following Taylor series expansions and their continued fraction
representations for α, β and A.
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Approximations of several truncation orders have been analyzed for α, β and A. It has been
found that α and β may be well approximated by low-order series for P < 6, while A cannot,
for which other functional form must be considered. Modifying Eq. (11) to behave better near
P = 0, new approximations have been obtained which satisfy A(0), A’(0) and A”(0):
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In order to exist a root for Aa(P) = 0, which is desirable in order to truncate the approximation
to zero for large P, the second-order polynomial inside the brackets must have a negative
concavity (a > 3) and a must be an odd number. For a better implementation efficiency, it is
desirable to work with a = 2n+1. This generates successive approximations with a = 5, 9, 17,
33,… , which are very good, especially near P = 0.

Table 1 shows the L2-norm and the maximum absolute error for the approximations of α,
β and Aa, for P ∈  [0,6]  The errors of α and β approximations decrease sharply as the order
increases, being much better than those for the αc and βc approximations. The errors in Aa

approximations decrease slowly as a increases. The A9 approximation errors are almost
equivalent to those of APL, but with a better behavior near P = 0.

3.3 Implementation efficiency of the new functional approximations

After analyzing the computational implementation of the α and β polynomial
approximations, the 7th order α and the 6th order β approximations seems to represent the best
compromise between accuracy and calculation speed. They can be written as
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Without storing any intermediate result, the α7 value can be calculate through Eq. (16)
using 6 products and 2 additions (polynomial formulae) or 6 products, 1 division and 2
additions (rightmost formulae). Equation (17) calculates β6 using 5 products and 2 additions
(polynomial formulae) or 6 products, 1 division and 2 additions (rightmost formulae). Since a
division is calculated much slower than a multiplication or an addition (around 8-10 times
slower in most compilers), the polynomial formula is the least expensive for computation.
Comparing to αc and βc computation, Eq. (10), α7 and β6 should be calculated even faster
than αc and βc. However, Eqs. (16) and (17) can be used only up to P ≈ 9 without generating a
nonphysical result. Thus, they are truncated at P ≈ 9 by using the fast MAX and MIN
FORTRAN functions:
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FORTRAN computations with Eqs. (10), (16)-(18) have shown that the evaluation of the
αn and βn using the continued fraction formula of Eqs. (16) and (17) are as fast as αc and βc

calculation, while αn and βn computation using the polynomial formula are 30-35% faster
than αc and βc evaluation.

Computation of Aa approximations is based on the storage of intermediate values for the
value of the second order polynomial inside the brackets of Eq. (15) and its even powers.
Even with this procedure, A(P) computation using A9 is 25% slower than the A(P) calculation
using the APL approximation, Eq. (11). The slower computation is compensated by a better
convergence behavior of the numerical scheme near P = 0. Since A9 becomes less than zero
for P > 11, the new interpolation function must be calculated through
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Table 1. Errors in exponential function approximations (P ∈  [0,6]).

α(P) approximations β(P) approximations A(P) approximations
f(P)

2
α−f α−fmax f(P)

2
β−f β−fmax f(P)

2
Af − Af −max

αc 0.04462 0.04211 βc 0.13020 0.12196 APL 0.0208 0.0147
α5 0.02120 0.02400 β6 0.02594 0.03117 A5 0.0432 0.0258
α7 0.00100 0.00137 β8 0.00595 0.00865 A9 0.0287 0.0169
α9 0.00003 0.00005 β10 0.00013 0.00021 A17 0.0195 0.0114

4. NUMERICAL EXAMPLES

In order to check the influence of the interpolation function approximation on the overall
numerical error, two problems have been solved using exponential schemes. The first one is
the one-dimensional steady convection-diffusion problem given by Eq. (1) with constant
coefficients and constant source term. Since the exponential schemes are based on the
solution to this problem, the overall error in this case is only due to the approximation of the
interpolation function. The second problem is the two-dimensional steady convection-
diffusion problem (2D viscous Burgers equation) considering a velocity field which makes a
45o-angle with the grid coordinates. This problem with a nonlinear velocity field is commonly
used as an example of the numerical error originated when one-dimensional interpolation
functions are used. This error usually dominates the overall numerical error.

4.1 Steady one-dimensional convection-diffusion problem

Consider Eq. (1) applied to a domain 0 < x < 1,  with φ(0) = 0 and φ(1) = 1, which is
discretized in the form of Eq. (2) with constant S. Using Eqs. (4) and (5) or (8), the final
discretized equation is written as

baaa WWEEPP +φ+φ=φ   (20)
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Equation (20) can be directly solved by Thomas algorithm (TDMA). WUDS and PLS
results are obtained when the terms multiplying δxe and δxw are dropped from Eq. (22). For
this problem, WUDS-E and LOADS are equivalent.

Figures 2 and 3 show the results for S = 5, Γx = 1 and ρu = 10 (physical Péclet of 10)
using N-1 volumes where N = 5, 10, 20, 40, 80 and 160. Uniform and nonuniform grids have
been used. The nonuniform grids were obtained through the x → x1/4 transformation of cell



faces that concentrates volumes near the x = 1 boundary, where large gradients are present.
However, they are, on purpose, extremely concentrated, being somewhat inadequate. This has
been done to test the scheme robustnesses. Cell centers were located at volume baricenters.

Figure 2 shows results for N = 5 when the exact interpolation function, Eq. (6), has been
used. For the uniform grid, very accurate results have been obtained. Furthermore, it shows
how important is to consider the actual values for ξ on cell faces in Eq. (22) for WUDS-E in a
nonuniform grid, even though they are still approximated by 0.5 in the α and β functional
approximations. The behaviors of PLS and PLS-E using Eq. (9) are similar to those of WUDS
and WUDS-E, respectively.

Figure 3 shows the norm of the solution error for results obtained through WUDS,
WUDS-E and PLS-E using the classical approximations (αc, βc and APL) and the proposed
approximations (αn, βn and An). The error norm is defined by
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where φN-1 is the approximate solution with N-1 volumes and φ is the analytical solution. The
uniform grid results show that the usage of (αn, βn) leads to a much better convergence
behavior for WUDS and WUDS-E than using (αc, βc). The usage of An instead of APL in PLS-
E shows only a moderate improvement in the convergence behavior. For the nonuniform grid,
WUDS accuracy degenerates, regardless of the approximations used for α and β (their curves
are superposed in Fig. 3b). WUDS-E with (αn, βn) behaves worse than for the uniform grid
but its convergence is still very good, being much better than those of WUDS-E with (αc, βc)
on the same grid. The PLS-E results with An on the nonuniform grid are also a little worse
than those on the uniform grid, and they are comparable to the results obtained with APL on
the same grid. On the other hand, WUDS-E with (αc, βc) and PLS-E with APL behave a little
better on the nonuniform grid than on the uniform grid. The WUDS-E with (αn, βn) shows the
best behavior on both grids.
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Figure 2 – Steady one-dimensional convection-diffusion problem: grid analysis.
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Figure 3 – Results for the steady one-dimensional convection-diffusion problem: (a) uniform
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4.2 Two-dimensional viscous Burgers equation

The chosen two-dimensional Burgers problem is given by (Cotta, 1993)
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where u = v = u0 for the linear problem and u = v = u0φ for the nonlinear case. For the linear
case, the analytical solution is given by (Cotta, 1993)
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Due to the one-dimensional results presented above, Equation (24) has been discretized
using only the methods that utilize the (α,β) formulation, that is, WUDS, WUDS-E and
LOADS. The final equation can be written as

baaaaa SSNNWWEEPP +φ+φ+φ+φ=φ   (28)

where SNWEP aaaaa +++= , and
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where { } we
e
w fff −=  and B at each face has been determined from convective-diffusive flux

evaluations for LOADS and from approximations for φ and its derivatives for WUDS-E. For
WUDS, b = 0. In b evaluation, Eq. (31), the actual face position, ξ, has been used. Equation
(28) has been solved by OMSIP (Optimized Modified Strong Implicit Procedure) (Lage
1996a, 1996b), using very strict tolerance criteria. Solutions of linear cases using the exact
interpolation functions have given the exact results to machine accuracy for WUDS and
LOADS. The results for WUDS-E are worse, although quite accurate, due to the finite-
difference approximations used to evaluate φ and its derivatives.

Figure 4 shows the error norm results, Eq. (23), for the linear case with u0 = 50 for the
uniform grid and a nonuniform grid, obtained by applying the x → x1/2 transformation to
volume faces, and for WUDS and LOADS. The usage of (αc, βc) leads to poor convergence
behaviors, while the (αn, βn) results show fast convergence to the exact solution on both grids
and for both methods.

The nonlinear case with u0 = 10 has also been solved by WUDS and LOADS in an
uniform grid (N up to 80). Both results with (αn, βn) are identical (to 4 figures) to those
obtained with the exact interpolation functions. However, comparing them to the numerical
converged solution given by Cotta (1993), it has been found that convergence has not been
achieved because the one-dimensional flux approximation dominates the overall numerical
error. There is almost no difference between (αn, βn) and (αc, βc) results for large N. In this
case the only reason to used (αn, βn) over (αc, βc) is that their calculation is about 30% faster.
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Figure 4 – Results for linear two-dimensional Burgers equation.

5. CONCLUSIONS

New approximations for the interpolation functions of exponential schemes (power-law
WUDS, LOADS, etc.) have been developed. These approximations are more accurate than



previous ones near zero Péclet number, leading to better convergence behavior and allowing
grid independent solutions. Their truncation, which leads to the upwind scheme, occurs at a
Péclet number about 9. The computational cost of the new (α,β) approximations are about 30-
35% lower of the classical ones (Raithby and Schneider, 1988), while the cost of the new A
approximation is about 25% higher than the cost of Patankar’s (1980) power-law.

The solutions of linear one- and two-dimensional convection-diffusion problems have
shown the better convergence behavior achieved by using the new (α,β) approximations. For
nonuniform grids and schemes with source term (WUDS-E, PLS-E and LOADS), it has also
been shown how important is to consider the actual face position when calculating the source
term. Among the tested methods, LOADS has shown the better convergence behavior in both
uniform and nonuniform grids. Solutions for the nonlinear two-dimensional Burgers equation
have proved that the overall error is dominated by the one-dimensional flux approximation
error, caused by the lack of cross-wind terms in these approximations (Leonard et al., 1996).
In this case, the error of the interpolation function approximation is not critical.
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