enharia Mecdnica
r ra E o n engress [} [ a RiIc a ngineering
22 -2 de Novembro de 1939/ November 22 - 26, 1999 J'iugr.ra-a de Linddis S8oc Psulo,

A THEORETICAL-NUMERICAL STUDY IN SINGLE CRYSTALS LARGE
DEFORMATION PLASTICITY

Roberto Dias Algarte

QRSW 03 Bloco B-7 Apto 205, Setor Sudoeste.

70.675-327, Brasilia-DF. Brasil. e-masl: rdabra@netscape.net
Edgar Nobuo Mamiya

Universidade de Brasilia, Depto. de Engenharia Mecanica.
70910-900 Brasilia-DF. e-mal: mamiya@lion.enm.unb.br

Abstract. The present work addresses theoretical and numerical aspects of single crystal elasto-
viscoplasticity. A rate formulation of the constitutive equations is considered, where two types
of self-hardening rules are studied. Cubic crystals under plane stress with two slip planes are
considered in the present study. Numerical procedures related to the integration of the resulting
constitutive relation 1s described in detail. Some quasi-static evolution problems are solved using
the finite element method.
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1 Introduction

The study on the mechanical behavior of single crystals is motivated basically by the fact that it
supplies the basis to understand most of the phenomena observed in polycrystalline materials.
Further, single crystals have been used as structural materials, as for instance, in the case of
some turbine blades.

The theory of plasticity in metals in the infinitesimal setting, based on an additive decom-
position of the total strain, cannot describe satisfactorily large plastic deformations of such
materials. LEE AND L1U [1967] and LEE [1969] introduced a multiplicative decomposition of
the gradient of deformation of the form F = FCFP. Such decomposition was considered years
later in studies performed by HILL AND HAVNER [1982] and by PEIRCE ET AL [1982] for the
description of the elastoplastic behavior of single crystals. On the other hand, it is worth men-
tioning that both papers were strongly influenced by the constitutive formulation proposed by
HiLL AND RICE [1972].

Because of its highly nonlinear character, plasticity in metals imposes certain difficulties in
finding analytical solutions to some practical problems. However, the development of computer
technology, together with advances in numerical techniques, allowed the obtention of solutions to
complicated problems in many areas of science and technology. In plasticity and viscoplasticity,
contributions from authors like SIMO AND HUGHES [1998] to the algorithmic fornmlation of
their constitutive behaviours made feasible the search for solutions in complex geometries and
boundary conditions.

This work presents a very simple study on elastoviscoplasticity in single crystals subjected
to finite deformations in the framework of the ideas pesented by HILL AND RICE [1972]. A



computational algorithm is implemented in order to study the behavior of the rate formulated
constitutive equations — where two types of self-hardening rules are studied — and also to
obtain results in some quasi-static evolution problems using the finite element method. For the
sake of simplicity, only cubic crystals under plane stress with two slip planes are considered in
the present study.

2 Multiplicative Decomposition

Let a deformable body B be described in two distinct states: a reference configuration By at
time t( and a spatial configuration B; at time ¢. Let dX be an infinitesimal line of By and dx
the corresponding infinitesimal line in Bt such that

dx =FdX, (1)

where F is the gradient of deformation, which describes the variation in length of all material
lines of the body *B during a deformation process.
Following LEE[1969], let us assume as valid the Multiplicative Decomposition:

F = FeFP, 2)

where F¢ and FP account respectively for the elastic and the plastic part of the gradient of
deformation F'.
The velocity gradient L can be related to the gradient of deformation as:

L:=FF 1, (3)
and, as a consequence, we have:
L = FF° ! 4 FFPFPlFe—], (4)

Decomposition of L into symmmetric and antisymmetric parts D and €2, respectively, leads to:

L=D+Q=L°+LP, (5)
where
Le:=FF! and LP:=F°FPFPIipe, (6)
From (5), we can also write:
D=D°+DP and Q=Q°+QP, (7)
where
Do

5 |:FeFe—l_|_ <FeFe—l>1v‘| ’ Dp:% [FerFp_lFe_l—l— <FerFp—lFe—l>1v‘| ’

(°=L°-D°, (P = LP - DP.

The tensor D is the total stretching tensor while €2 is the total spin tensor.



3 Large Crystalline Deformation

In this work, the description of the elastoviscoplastic deformation of single crystals is based on
the following assumptions proposed by HILL AND RICE [1972, p.401]: “... (i) distortion of the
lattice is effectively elastic; (ii) the crystal also deforms by simple shears relative to specific lattice planes and
directions; (iii) such "slip systerms’ are active only when the corresponding shear stresses attain critical values;
and (iv) each value is a functional of the entire slip history of the crystal.”

3.1 Kinematics

The tensorial quantities F'¢ and FP defined by the Lee multiplicative decomposition perform the
following actions:

a) The Viscoplastic Deformation Gradient FP is responsible for the viscoplastic deformation
of the single crystal, characterized by the slipping of lines or planes. This deformation
does not produce rotation and it occurs with no volume change, i.e. JP:=det (FP) = 1.

F’ /

\

Figure 1: Action of the Viscoplastic Deformation Gradient

b) The Elastic Deformation GradientF® is responsible for the elastic deformation of the single
crystal, i.e., for the distortion of the crystalline lattice. Stretching and rotation are rep-
resentative motions of this deformation which can be associated with changes in volume,

ie. J:=det(F)=det(F°).

Figure 2: Action of the Elastic Deformation Gradient

The process of elastoplastic deformation is described by the combined effects of FP acting
on By into the “intermediate configuration” B¢ and of F€ acting on By into the configuration B

In order to study a specific slipping system, it is convenient to consider a reference that keeps
its orthogonality during the deformation process. In this sense, let (sg, mp) be an orthonormal
system defined at the configuration By. The vector s is parallel to the slip direction and my is
normal to the slip plane. The tensor FP does not modify the orthonormality of (sg, mg). Thus,
if (s,m) is related to the intermediate system By, then it follows that (sg, mp) = (s, m). Making
use of this equivalence and considering (s, my) the system (sg, myg) at the configuration B, the
following can be stated:

(S4, M) = <Fes,Fe_Tm> . (8)

where (s, my) preserve orthogonality. The schematic representation of the elastoviscoplastic
deformation process can be observed in the figure 3.

The amount of slipping in a determined plane (or line) & can be measured by a variable
related to the shearing angle 3 (@), For this purpose, the measure ,),(a) of slip can be defined as



Figure 3: Large Single Crystal Deformation

the tangent of 3 (@) when a unitary vertical distance is assumed. This micromechanic variable
can be related to a macromechanical one through the following equality:

FP =1+~ <so(o‘) ® mﬂ(a)> . (9)
Using (9), we obtain:
FPFR—1 = 4 <S(a) ® m(a)> .

Assuming “n” slipping planes (or lines) we have:

P = 35 (59 o ml) (10)
o=l
From (6) and (10), we obtain:
P = Y4 (sf‘)@omio‘)) :
D — % () [(sﬂf‘)@mio‘)) + (mio‘)@sio‘))] .

3.2 Constitutive Fornmlation
3.2.1 Stress-Strain Relation

The authors CUITINO AND ORTIZ [1992] proposed the following stress-strain hypoelastic relation
for the elastic deformation of crystalline solids:
Ly m=CD¢®, (11)
where L7 is called the Lie Derivative of the Kirchhoff stress 7, C is the stiffness fourth order
tensor and D® =D — DP. The objective stress rate LS T is defined as:
d

LT :=F° {d—t [Fe_lTFe_T] } FT. (12)

3.2.2 Schmid’s Law

The so called Schmid Stress 7( is the component of the applied stress acting on the direction
of slip in the plane . Using energy balance considerations, it is possible to obtain the following
micro-macro correspondence:

(@ — 7. <sgﬁa) ® mgﬁa)> . (13)
The Critical Schmid Stress Téa) is the limiting value for 7(® in such a way that when (%) = Téa),
slipping occurs. This fact is known as Schmid’s Law.



3.2.3 Flow Law

The flow law represents the evolution equation for the viscoplastic deformation. In this work,
we consider a law proposed by HUTCHINSON [1976]:

@ [l ]m "
(o) — 8 T [T 14
7 70 Téa) Téa) ] ; (14)

where 7 is the reference rate of slipping, 7(® is the Schmid Stress in plane a, Téa) is the Critical
Schmid Stress in plane « and m is the material rate sensitivity.

3.2.4 Strain Hardening

Tests performed with single crystals reveals that slip systems need increasing loads to keep
slipping. It is also observed that the stress in a determined system depends not only on its
slipping history (self-hardening), but on the global slipping history of all other slip systems
(latent hardening). In order to model these phenomena, HILL [1966] proposed the following
hardening law:

H = 3 hog 50 (13
p=1

where hqg is the hardening modulus. Among some possible hardening laws described in the
literature, the present study adopts the one proposed by PEIRCE ET AL [1982] :

hap = [a+ (1 —q) Sapl b, (16)

where q is the parameter that ranges in 1 < ¢ < 1,4 and h is the self hardening material
parameter.
Two distinct laws describing the parameter h(® are considered. The first one was proposed
by PEIRCE ET AL [1982] and is given by:

h® = Hysech? (ﬂ> when = Z’y(a), (17)
a=1

Ts—1T0

where H is initial hardening modulus, 7 is the saturation value for the Schmid Stress and 7y is
the initial critical Schmid Stress. The other hardening law, proposed by ANAND AND KOTHARI

[1996], is given by:
AN
L = Hy (1— < ) : (18)

Ts

where a is a material exponent.

4 Numerical Solutions

4.1 Solution of the Incremental Constitutive Equations

This work uses the Newton-Raphson iterative method to solve the Implicit Euler discretized
constitutive equations. In the case of a scalar function g(z), the method is described by following
scheme:

o g(=w)
PRAL=Th = (19)




If a tensorial function G (A) is considered, then the method can be written as:

grad G(Ag) [Ar+1 — Ay

By considering (10), we obtain:

= —G(Ap). (20)

YD ng1 = (v

& (FP)py1) := (Fp)n+1A - (FP)n az: N <s<a> ® m<a>> (FP)y1=0. (21)
grad @ ([(Fp)n—l-l]r) {[(Fp)n—l-l]r—lrl - [(Fp)n—l-l]r} =-0 ([(Fp)n—l—l]r) ) (22)

where
orad @ ((FP),p1) % i ®e;Be,®eq. (23)

Similarly to the scalar expressions (14) and (15), the following can be written:

T <(T(a))n+l> - (Téa))nﬂ - (Téa))n

C = At
T [(Tc )n—i—l]?“)
Téo‘) ntl)r+l = Téa) nrlr < ?
(7)) nt)rr1 = [(7¢Y) ] 1! <[(Tc )n—i—l]r) )
) -_( (a))n ( (a))n . 7_(oz))n (T(a))n nil_l_
A <(’)’( ))n—i-l) =7 +1At : - (T(ga))ni (TéOl))ni1 ] - .
(@)
(YN rgtlit = (V) ] — //\\' (([[((?7(“)))2111]{;)) ' .

4.2 Discretization of the Bidimensional Domain

In this work the finite element fornmlation is based on the rate form of the virtual power principle

and the Galerkin Method. This principle can be written for crystalline plasticity as:

/J_l <L$T—LPT—TLPT—|—LT>:gradnth:/ .’.c-ntdS—l—/ pb-n:dV . (28)
Bt OBt Bt

where 7 is the spatial virtual velocity, t is the contact force density and b is the body force

density.

In the case of plane stresses, the stress-strain relationship is written as:

[ (LgT):c:c ]

(LgT)yy = B

| (LgT):cy

52

¢

52
¢

0

— e -
D$$

e
Dyy

| 2Dgy |

or {Ly7}=[C{D%}, (29)



where (, # and k are the coefficients of the stiffness matrix C when a cubic crystal is considered.
The spatial discretization leads to the the description of the fields nf and v* as:

77? = Znﬁihf and vi= Zvjh;' +v, (30)
13—l =1
and hence (28) can be rewritten as:

/ BT [P BV 4 BT vk Y — / oTihds + / OT bV —
B J oB; B

(31)
_/ BT[QB{[gmd‘_’]S}—I_BTLThJB{grad{r}dJ_‘;’
B:
where
Ohi/0x 0 Ohy/0x 0
B:= 0 (’9h'1j/8y 0 8h§/8y v | 3
Ohi/dy Ohi/0z Ohy/0y Ohh/Ow
[ Vel ] . .
ht 0 h§ 0 Vyq TS:C (31 Tgy 91
=9 ’ B I ho | v . hy._ Ty Tay | .
O: 0 h%_ 0 h12; ] ) \A vii 5 LT J : Télm g ngy ; :
: 0 Tfély 0 Ta]cl:c

Ohty/ 0z 0 Ohty/ Oz 0
0 Oht1 /8y 0 oh/dy ... |
Ohty /0y 0 Ohty/ Oy 0 e |
0 Ohty/ 0z 0 Ohty/ Oz

B:=

Tt
olast _ [Lfﬂ'h — LPh Th(Lph) ?f — [Lfﬂ'h — LPh Th(Lph)T] i

—_= ert b
e D~ D,

where [8]P°T* represents perturbed components following CAR ET AL [1997).

5 Numerical Results

The results obtained for the numerical results are based on the following plane stress scheme
with double slip (two slip planes):

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4: Model for the Numerical Solutions.



5.1 Constitutive Fornmlation

The values for the numerical constants are: 49 = 0,001; m = 0,05; q=1,2; 79 = 16MPa. The
self-hardening parameters Hy and 75 are taken to be 142,4MPa and 28.8MPa respectively when
(17) is considered and 180MPa, 148MPa when (18) is considered. Such values are taken from
the works of ANAND AND KOTHARI [1996] and PEIRCE ET AL [1982].
It is also adopted the following prescribed conditions:
Stretching = F = L+a(t) 0 ] , Shear = F =

0 1

1 5(t)
o I

Considering a 60% stretching, the following graphic is obtained:

100.00— 0.60
80.00—

80.00—

7 (MPa)

40.00—

Figure 5: Schmid Stress versus Slip in stretching with ., =0,6 and ) = §(2 =30°.

where the “ANAND Hardening” (18) shows a stiffer character than the “PEIRCE Hardening”
(17).
The behaviour of the “PEIRCE Hardening” curve in figure 5 can be compared with a curve
presented in PEIRCE ET AL [1982], adapted to the figure 6.

m—0.005

7 (MPa)

X - Experimental Points

m— Rale Dependent Model

“©- PEIRCE [1982] Modcl

@ o T T
()

Figure 6: Schmid Stress versus Slip with 7o = 60,84MPa and #() = #(2) = 30° (adapted from PEIRCE ET AL
[1082], Figure 10).

The PEIRCE ET AL [1982] curve shows the behaviour of a rate independent constitutive
formulation, which is present in their work. The present work, however, adopts a rate dependent
formulation. It can be concluded that the increasing values for the rate sensivity tends to
approximate the rate dependent curve to that of the rate independent formmlation.

Considering the shear prescribed condition, the curves in the figure 7 are obtained. It can
be observed that no pathological effects (oscillations, for example) are present.
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Figure 7: Kirchhoff Stress versus §(¢) in shear with 8¢, = 10 and A1) =62 = 30°.

5.2 Finite Elements

The initial mesh configurations and boundary conditions used in this work are represented in

the figures 8 and 9.

v v
-— ] —

I - L 1 L L] >

Figure 8: Boundary Conditions using prescribed velocity.

[z

X
Figure 9: Boundary Conditions using prescribed load rate.

There are two degrees of freedom in each node of the quadrilateral element. It is used bi-
linear shape functions. As PEIRCE ET AL [1982] suggest, it is necessary to impose a thickness
inhomogeneity in meshes like that of the figure 8, in order to obtain some localization behaviour.

[kl
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+1.9844E-01
+1.2409F%-01

Figure 10: Distribution of the Slip Modulus ¥*) in a residual plastic deformation of Al/lo = 0,25, v = 0,01
m/s with () =42 = 20°.

The values for the numerical constants are: 49 = 0,001; m = 0,05; q= 1,2; 79 = 16MPa.
The self-hardening parameters are defined only for (17): Hy = 142,4MPa and 75 = 28, 8MPa.

The results obtained, imposing Al/lp =25% and v = 0,01lm/s, are shown in the figures 10
and 11.
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Figure 11: Distribution of the Schimid Stress Modulus 7(1) in a residual plastic deformation of Al/lo = 0,25,
v =0,01m/s with () =6 =20°. Values in Pa.

These graphics reveal a low level of localization, both in terms of stress and slip, near the
slip line number 1 defined in the model of the figure 4. Results for the slip line 2 are similar.
Imposing a loading-unloading cycle through the load rate P, the following result is obtained:

[Faal

-5.9948E-C
-5.3527L-C
-4,710"F-C
—1.0686F-C

= —3.4265E-C1
=2.7844FR-C1
-2.1421L-C1
-1.5C03E-C1
-8.5824F-C7

Figure 12: Distribution of the Slip Modulus 4% in a residual plastic deformation of Al/lo = 0,11, for a
loading-unloading cycle and (1) = (2 =20°,
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