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Abstract.The purpose of this work is to present a solution of the torsion problem with complex
cross section beams by the finite element method. The elements used are high precision
Hermite type, which can express null transverse shear stress at the boundary of the cross
section and further impose the continuity of the transverse shear stress at the interface
between two isotropic materials. We propose an analytical/numerical comparison,
numerical/numerical comparison and in the numerical/experimental comparison we take
beams used currently in bycicle wheels applications.
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1. INTRODUCTION

To model structures using beam elements we need to know some characteristcs of the
cross section, such as: principal axes, the cross section inerties, the shear coefficient, the shear
center and torsional stiffness. These parameters are easily obtained in some cases for isotropic
beam withs: circular and rectangular cross sections, hollow cross sections with thin walls.

The homogenized characteristics of beams are obtained by submitting the section in
bending moments, torsional moments and shear loads. The determination of the equivalent
stiffness in bending have no particular problem. However, in the case of sections made of
composite materials and/or with a complex shape, the determination of the transverse shear
stress is complex and needs a particular development. The analytical solution of the torsion
problem for prismatic beams, including beams with composite phases was proposed by
Muskhelishvilli (1953) . Nevertheless, the solution proposed is difficult to apply on sections of
complex shape. The solution of this problem was proposed by Shaw (1944), Southwell,
(1946), Allen, (1955) , using a relaxation method. Ely, et al. (1960) extended this method in
order to apply it to complex sections with composite phases. One of the earliest work



permiting to resolve the torsion problem with any cross section by a finite element formulation
was published by Zienkiewicz et al. (1965).

The purpose of this work is to resolve the torsion problem of beams with isotropic phases
using finite elements with semi-C1 continuity. These elements permit the continuity of the
transverse shear stress at the interface between the phases, and a better precision of the
transverse shear stress distribuition on the cross section of the beam. In the validation of the
formulation we propose comparisons between analytical solutions and between different
numerical methods. In a numerical/experimental comparison, we use bycicle wheels beams
with industrial application.

2. THEORY

Consider a transverse cross section of a beam with isotropic phases working in torsion,
submitted to a pure moment Mx , Fig. 1.
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Figure 1 - Beam with isotropes phases in torsion

The displacement field relative to a plane stress state is defined as:

u
d

dx
y zx

x=
θ

ϕ( , )                                                                                                           (1)

u z zy c x= − −( ) θ                                                                                                         (2)

u y yz c x= −( ) θ                                                                                                            (3)

with:    θx  = rotation of the section around the x axe,
( )ϕ y z,  = warping function for torsion,

(yc, zc) =  position of the shear centre.

The origin of the coordinate axes is defined by the position of the elastic position center
and the principals axes. With Eq. (1), (2) and (3), the only stress components acting on the
section are:
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The equilibrium relation on the transverse cross section is written as:
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To verify Eq. (6), the Eq. (4) and Eq.(5) are differently formulated:
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with: φ(y,z) = stress function

The new function φ( , )y z , must satisfy the differential equation:
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The stress function φ( , )y z  is the solution of Eq. (9), when satisfing the boundary
conditions:

φ = 0                                                                                                                           (10)
and,
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The perfect assembly between the i and j phases add some boundary conditions such as,
the continuity of the stress function, the continuity of the strains on the longitudinal plane at
the interface and the continuity of the shear stress at the interface, so:
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and,
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The torsional moment may be expressed as:

( )M y z dSx xz xy
D

= −∫ τ τ                                                                                             (15)



The equivalent torsional stiffness of the beam can be deduced in Eq. (16) as:
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3. THE FINITE ELEMENT FORMULATION

The application of the weighted residual method proposed by Zienkiewicz et al. (1965)
and Dhatt et al. (1984), permits to approach the solution of Eq. (9) by writing the
orthogonality conditions of the error in relation with the ponderation functions depending on
the element chosen. These elements  shown in the Fig. 2, are of high precision Hermite type,
Dhatt et al. (1984), and have 3 nodals variables per nodes.

Figure 2 - Semi-C1 finite elements

The geometric approximation is linear or quadratic and the second one allow a better
definition of the geometry in the case of complex boundaries.

By considering the integral form in torsion given in Eq. (9) and by taking into account Eq.
(11) we get:
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with:       ψ = ponderaction function

The nodal aproximation is given:
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Thus, the linear equation system to solve is expressed by:
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This system equation is integrated in the reference space (ξ,η):
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with:   J  = determinant of the jacobian matriz

The matrices [Bξ], [Q] and [T] are given in Dhatt et al. (1984). The boundary conditions
at the interfaces are verified when the assembly of the global matrix. The nodal variables
corresponding to the material j are expressed as a function of the nodal variables
corresponding to the material i using Eq. (12), Eq. (13) and Eq. (14).

4. COMPARISONS

4.1 Comparisons between analytical solutions on notched cross sections

This following type of sections were studied analytically by Cicala (1935). The
comparisons between Cicala (1935) and the finite elements solution are shown in table 1.
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Figure 3 – Notched cross section n1
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Figure 4 – Notched cross section n2

Table 1 - Torsional stiffness <GJ> for notched cross section

 <GJ>

Cicala (1935) Present work

Notched Cross Section n1 0.3776 0.3693

Notched Cross Section n2 1.855e-4 2.029e-4



4.2 Comparisons between different numerical methods on multi-phase section

Bi-phase square section

The following example presents a square cross section having one interface between two
isotropic materials. The finite element solution is compared with an exact solution,
Timoshenko (1961), a solution by series, Muskhelishvilli (1953) and a solution by the finite
difference method, Ely (1960). The results are presented in Table 2.
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Figure 3 – Bi-phase square section

Table 2 – Torsional Stiffness <GJ> on bi-phase square section

 <GJ>

α Timoshenko(1961) Muskhelishvilli (1953) Ely (1960) Present work

1 0.1406 0.1407 0.1388 0.1406

2 - 0.1972 0.1941 0.2023

3 - 0.2399 0.2358 0.2554

Square cross section with circular insertion

The finite element solution of this problem is compared with the one obtained by finite the
difference method Ely (1960). The torsional stiffness <GJ> obtained by
Ely (1960)  is 0.2119 whereas the one obtained in this present work is 0.1911.
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Figure 5 – Square cross section with circular insertion

4.3 Numerical/experimental comparison

The correlaction of the numerical and experimentals results is made using bycicle wheel
beams (hollow complex sections). The experimental device developed to measure the torsional
stiffness is presented in Pereira (1996). The properties of the material are: E = 6.95e10 N/m2,
G = 2.61e10 N/m2 e ν = 0.33. The results are shown in Table 3.

Table 3 - Numerical/experimental comparison of the torsional stiffness

perfil J exp (mm4) J num (mm4) ∆ (%)

b1    
3425.6 3466.4 1.19

b2   917.4 869.2 -5.25

b3  1368.5 1226.1 -10.41

b4   
3752.8 3293.0 -12.25

The numerical solution of the torsion problem of hollow beams using the stress function is
not simple. The elimination of the inner part disturbs the stress distribution of the cross section.
This problem can be easily observed in the case of complex sections, where it is possible to
verify the isovalues of the stress function for the beam filled with a virtual material (Gv) change
in a regular way than the hollow beam, Pereira (1996).

The Fig. 9 shows the convergence of the torsional stiffness as function of the real material
(Gr) and the virtual material (Gv). The absence of the virtual material leads to values 80 %
lower than the experimental values.
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Figure 9 - Evolution of J as function of Gr/Gv - beam b1

5. COMMENTS AND CONCLUSIONS

It was noted in the analytical/numerical comparison of the notched cross section n2, where
the stress concentration is high, that the numerical torsional stiffness is higher. In the square
cross section with circular insertion, it was observed with a finer mesh that the result it was not
so better.
The results obtained with the bycicle wheels beams are satisfactory if we consider the
dispersion of ±3 % over the materials properties and of ±  20% over the geometry. The
precision on the geometry is highly bounded by the fabrication process.
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