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Abstract: Slipping between two rough solid bodies, moving in any manner, during collision is
analyzed considering Coulomb’s Law of dry friction and negligible deformation in the region of
impact. Only the evolution of the tangential collision forces and velocity is discussed. It is found
that a vector treatment of the problem simplifies existing geometrical views of the problem,
opening ways to generalizations. Plastic, inelastic and perfectly elastic bodies are considered.
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1. INTRODUCTION

Collision between two rough solid bodies was studied with some details by Routh (1897),
Beghin (1952), Levi-Civita & Amaldi (1937) and several other authors, must works dating at the
end of the past century and earlies 1900 (e.g. Darboux, 1889; Mayer, 1902; Péres, 1926).

Routh’s approach, as well as Levi-Civita & Amaldi’s, follows the evolution of the
impulses, based on the dynamics of collision and Newton’s definition of the coefficient of
restitution, always relying on a geometric interpretation of the path followed by the impulses.

Beghin’s treatment actually follows the velocity and acceleration of the point of impact,
applying the concept of totally inelastic collision, with terminal velocity of the point of impact
being zero, and totally elastic collision, with inversion of the normal component of the velocity of
that point.

Not many works have been lately developed on the subject, although in a surprising paper
by Derby and Fuller (1999), with an equally surprising title “Reality and Theory in a Collision”
the authors “discover” that friction plays an important role in the collision of two billiard balls.
Their results could be well obtained by an elaborate theory, available since about 100 years.
Actually, the fact that the trajectory of the billiard balls is parabolic until slipping on the
supporting table stops, being rectilinear afterward, follows from a simple theoretical calculation
(Giacaglia, 1967). The fact that friction is a very important force, especially during collision, was
demonstrated by several examples in the early literature, in simple cases by Levi-Civita & Amaldi
(op. cit.) and Beghin (op. cit.).

One of the complicating factors in the available literature is the mathematics used in the
theoretical development of the physical phenomena involved, where a vector and matrix
formalism is completely absent. The basic reasoning of this work is based on Beghin’s work (op.
cit. ,Chapter XV). The procedure consists in following the evolution of the velocity of the point
of contact during the time of collision, by integrating the dynamical equations of each body



resulting from the motion of the center of mass, the equations for the angular momentum and the
law of friction. It has to be assumed, as usual, that during the collision, the acting forces of
contact are very large, that is, their impulse is finite during a very short time interval. In vector
and matrix notation, components will be named with subscripts /, 2 or 3.

2. EQUATIONS OF MOTION

ks

Let for any of the intervening bodies ¥; be the velocity of the center of mass, ¥, the

velocity of slipping, G the center of mass, O the point of contact at collision, F the force of
contact per unit of mass, satisfying the law of action and reaction at any instant, w the vector
angular velocity, and J the inertia matrix relative to the center of mass, in a coordinate system
with origin at O, the x; axis normal to the surface of contact at O and plane Ox,x, tangent to this
surface. The equations of motion for any of the two bodies may be written as follows:

5=

) . (2.1)
w=-JF

where matrix J is symmetric and inverse of matrix Js., while I is skew-symmetric. The velocities
of O and  are related by Poisson’s Law

Vo=7;+10 (2.2)

From the above equations one finds

¥, =(1-S)F (2.3)
where I is the identity matrix and S = I'J I''is a symmetric matrix. Except for Coulomb’s Law of
dry friction and Newton’s empirical L.aw for the coefficient of restitution, applicable at the point
of impact, Eq. (2.3) is sufficient for the analysis of the problem. Obviously, slipping is present
whenever the relative velocity of point O of one body with respect to point O of the other is not
zero. For the equation giving the vector angular velocity, it is assumed that pivoting friction is

negligible, that is, the contact area is very small, if not zero. It is noted that Eq. (2.3) may be
written as

sozgym%¢ (2.4)
where

O(F)=F"F-F"SF (2.5)
The equation

D(F)=r—F'SF =1 (2.6)

represents a surface X and ¥, is orthogonal to this surface in view of Eq. (2.4). The line drawn
from point O and parallel to F, intercepts surface X at point P defined by



P-O=AF (2.7
where A =(F? —F7SF )™ . This geometrical interpretation was introduced by Beghin,.
3. MOTION UNDER SLIPPING CONDITIONS

When the slipping velocity is not zero, Coulomb’s L.aw gives the magnitude and direction

of the tangential force during impact and as long as slipping occurs.
Let £t be the dry friction coefficient between the colliding bodies. Tt follows that

F=[_H{;S+£3]F3 (3.1)
where v, is the unit vector along the slipping velocity ¥, given by
V=¥, —v,;X; (3.2)

From Eq. (1.3) one finds, fork =1, 2, 3

Vor =Fy _ZSkij (3.3)
i

By taking into account Eq. (3.1), it follows that

Dor = [—(1=S,, o, + 815V, 1ve, +vo, )77 =55 1F;
Vor ={H[—(1=S3 oy + S5V, ]("czyz + "1232 )71/2 — 8,5 JF; (3.4
Vos =L LS50, +Sa3ven IV, +ve, )72 +(1=S4; JF,

With obvious definitions, Eqgs. (3.4) may be written as

dVOI — dVOE — dVO.? (375)
n(VorVor ) Ma(VopVer ) Ms(VopVer )
These are the differential equations of a curve defining the trajectory of point M defined by
M-0=5%, (3.6)

while vector 7 is normal to the surface defined by Eq. (2.6). It is seen that following the path of
point M, as given by Eqgs. (3.5), one follows the evolution of the velocity of contact point O
during impact. It is also important to note that during impact, the two colliding bodies remain in
contact one with each other, so that the relative velocity along the common normal X; is zero,

during the deformation phase as well as during the restitution phase. Again, it is stressed that
deformation due to tangent friction forces are neglected. From the initial value of the velocity of
point O, integration of Eq. (3.5) will give the slipping velocity vs at any instant. Such velocity
may, of course, change direction during collision, at any instant at which the slipping velocity
given by Eq. (3.5) becomes zero.



4. MOTION AFTER INITIAL SLIPPING

In the event that slipping in one direction terminates, it can continue in the opposite
direction. If slipping ends at a given instant, one has the conditions vo; = voz = 0, so that the
colliding bodies are either in a pure deformation or restitution phase. If the normal velocity v,
has not reached the values given by Eq. (5.3) or (5.4), it will continue to increase its absolute
value until such values are attained, and the acceleration of point O will be in the direction of
Ox,, so that from Eq. (2.4) it follows that

ID/IF,=dP/IF, =0 (4.1)

and the components F; and F; may be found as a function of F;. Considering the known formula
for & as given by Eq. (2.5), it is found that

Fir=a;:F;, F,=a,F; (4.2)
where
a.. = (1+S8,,)8;; =85,
3=
sz—(1+Su)(1+S22)
4.3)
_ (1481085, =855
dy3 =

Sp—(1+8, (1+5,,)

giving the value of the tangential reactions through the end of collision. Condition for not
slipping, according to Coulomb’s Law is F/ +F, < u”F; , so that one has to verify the condition

a‘, +vai <u’ (4.4

which depends only on the position of the center of mass of any of the two colliding bodies, their
inertia matrix and friction coefficient . If condition expressed by Eq. (4.4) is not satisfied,
slipping will not terminate but will change direction. At this moment, the velocity of point O will
be in the direction of the Ox, axis, since the tangential components are zero and the following

slipping velocity ¥, will be in the opposite direction of the friction force F, = F—F,%,.
5. END OF COLLISION

Considering collision between perfect elastic bodies (restitution coefficient equal to unit),
according to Newton’s Law collision will terminate by the inversion of the normal velocity, that is
when the accumulated elastic internal energy is returned to the bodies. If the collision is totally
inelastic (restitution coefficient equal to zero), also according to Newton’s Law, collision will
terminates when that velocity reaches the same value for both bodies, zero in case of collision of a
body against a fixed obstacle. In a particular case this is visualized in Fig. 1 below. In case of a
perfect elastic collision the total work done by the normal force during collision is zero, that is the



energy input during deformation is equal to the energy output during restitution, this work being
performed solely by the normal component F, of the contact reaction at point ©

This is expressed by condition

J" Fy vy, di =0
fp

(5.1
On the other end, Egs. (2.3) and (2.5) give

F=(1-5)"%,=Y%, (5.2)

the inverse matrix existing in all cases except when all eigenvalues of § are equal to unit, a
singular case to be excluded. From Eq. (5.2) it follows that F, = ZY3 Vo, so that Eq. (5.1)
k

becomes
J;IZ(Y“d"ok Wo; =0 (5.3)
ok
In a head-on collision, ¥3; and Y3z are zero, resulting the well known condition of total reversal of
the normal velocity of the contact point O, i.e. vos(ti) = - vos(ts).
6. EXAMPLES
6.1. Disk hitting a step

A simple application of the theory described in this paper is the case of a rough disk
rolling, initially without slipping, over a horizontal table, and hitting a vertical step at his corner. It
is supposed that the collision be perfectly elastic, the mass being unitary, radius R, central moment
of inertia J and initial angular velocity a». With notations already introduced, one has

v, =(I-S)F (6.1.1)
where the problem is essentially two-dimensional, so that

vy, (0)=—Rw, sint

vy, (0) = R@, cos?¥

F, = normal component of collision force

F, = tangential component of collision force
I =identity matrix 2x2

S, =1 8,=-R"1J

Vector 1';'0 is parallel to vector (I — § )F so that, under slipping conditions, one has the relation

1}02 — (1_ Szz)Fz

=(1-S,) u (6.1.2)

Vo 1



It follows that, since the ratio is constant, the finite increments in speed during slipping at collision
are related by

ffﬁi=(r—sn)u (6.1.3)

Vou

from where one finds at any given time, during collision and slipping, the velocity of the impacting
point O as given by

Vo, =V (0)+Av,,

(6.1.4)
Vor = Vo () +Avy, = v, (0)+(1=55) 4 Avy,
If slipping stops, the tangential velocity of the contact point is zero, and in this case
v,,(0)
Vo =V (0) +Av, = v, (0)— (I_O;,ﬁ (6.1.5)

which is the velocity of point O at the end of slipping. If the velocity v, reaches value zero
before the end of slipping, then Av, =-v, (0) and v,, =v,,(0)—(1-35,,) 1 v, (0). Several
other combinations are possible, by considering all possible cases v,,; = or < or > 0. In case of an

elastic collision, the velocity with which point @ emerges from collision along the normal
direction, in this case line OG, is equal to a factor e (restitution coefficient) times the initial
velocity, that is

v, (final)=—ev, (0)=e®, R sint} (6.1.6)

Under this assumption, the foregoing relations allow the determination of the final velocity along
the tangential direction, indicating whether slipping ends before the end of collision or not.

6.2. Two rough equal spheres rolling over a horizontal plane

Two spheres of equal radius R and equal unitary masses, with angular velocities o and @,
impinge one upon the other in a head-on collision. Let the line joining G; and G- be taken as the
x-axis, with origin at Oy, the point of sphere (1) colliding with point O of sphere (2). Let the y-
axis be directed in the upward direction. The initial velocities of O, and O: are given by

1_"ol (0= (Vcl1 (0), - Rw,)
1_;01 0)= (VGI1 (0),— Rw,)

(6.2.1)

In this case one has to consider the relative velocity of the points of contact, say of point O;
relative to point O;, that is,

=

Uy =V, ¥, =W, — Ve, — RO+ R@,) (6.2.2)



The dynamical equations of the problem are

: R?
Vv, =(2F,, 27 F,) (6.2.3)

where we have used the law of action and reaction at the point of contact. From this point on the
reasoning is similar to that used in the previous example.

6.3. Beghin’s example (Chapter XV, n. 287, p. 481)

With obvious changes in notation, the problem of a falling rotating disk that hit a rough spike at
point Q, at distance a from (, may be represented by the following equations (we have
considered M = 1):

]_’; 0)= —a ’_vver i Cil )
_"O( ' ( ' 4 tical (631)

Vo =V, Vo3 )= [(1=85 )y, (1=S3; )F; |
where S,, =—2(a/R)*,S,, =—4(a/R)*. Since slipping will certainly occur at the beginning of
contact, unless an infinite friction is present, the evolution of the velocity of contact point O is
given by the straight line

dvg, _Avgy _ u 1=y (6.3.2)
dv,, Avgs -5,

so that, at any given time during collision under slipping conditions, one has

TEN)
Voo = Vo (0)+ U 7 SZZ Avps (6.3.3)

T Y33

/ wi=-ev3[0]
|

wa=0
I
| w3[0]
Fizure 1
Three possible cazes
of slipping

At the end of slipping, this velocity is zero, and the evolution depends on whether this happens
before or after the normal velocity reaches the value dictated by Newton’s law, that is



Vo; = —ev,;(0). Three possible situations are actually described geometrically by curves I, II, TII
drawn at page 481 of Beghin’s work. Curves Il and III (Figure 1) represent the condition v,, =0
before the end of collision, that is, the normal velocity at the end of slipping is given by

1-S,, I

(6.3.4)
1=Sy, 1

Vos = Vo3{0)—

while curve I corresponds to slipping all through the duration of collision, with final normal
velocity of point O satisfying Newton’s Law.

7. CONCLUSION

A new mathematical formulation of the problem of rough solid bodies colliding with negligible
deformations has been presented. A more comprehensive work has still to be developed, where
the evolution of the rotational velocities should be determined. Another point to be explored
should be the presence of pivoting friction, an important influence on these velocities. It is our
view that a theory should be developed combining Routh’s and Beghin’s approaches.
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