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Abstract. A set of orthogonal functions can be integrated using a so-called operational
matrix. This property can be used to transform linear differential equations into algebraic
equations, which can be easily solved. When dealing with mechanical systems, structural
and/or modal models can be determined from these algebraic equations. In this paper, this
procedure is investigated by using different types of orthogonal functions: Fourier series,
Legendre polynomials, Jacobi polynomials, Chebyshev series, Block-Pulse functions and
Walsh functions. A feasibility study is performed on  this technique when applied to the
problems of modal parameter identification and input force reconstruction, using the time
responses of the structure. The main features and capabilities of the method are demonstrated
through applications to both numerically simulated and experimentally tested mechanical
systems.
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1. INTRODUCTION

Modal parameters – natural frequencies, modal damping factors and mode shapes – have
long been used in various applications in the realm of Mechanical Engineering, such as:
dynamic analysis of complex structures, finite element model updating, evaluation of dynamic
loads, prediction of dynamic response, control, damage detection, etc.

Some time domain modal identification techniques became very popular the last two
decades. Ibrahim Time Domain Method (Ibrahim and Mikulcik, 1977), complex exponential
method (Brown et al., 1979), Polyreference Time Domain Method (Vold et al., 1982),
Eigensystem Realization Algorithm (Juang and Pappa, 1985) and Autoregressive-Moving
Average Model (Smail et al., 1993) have been successfully applied to different kinds of
mechanical systems.

Another problem that has received much attention from researchers and engineers is the
identification of excitation forces from the dynamic responses. The main motivation for this is



that in a number of practical situations the direct measurement of forces, using force gauges,
proves to be ineffective or even impossible. Such is the case, for example, when the forces are
applied at inaccessible locations of the structure or when the introduction of force transducers
is likely to significantly change the dynamic characteristics of the mechanical system. In these
cases, the indirect identification of input forces from the dynamic responses of the structure -
which can generally be easily acquired - appears as a valuable alternative.

Several techniques for force identification, operating either in the time domain or in the
frequency domain, have been proposed (Stevens, 1987). As for the time domain methods, the
most widely known is that named SWAT (Sum of Weighted Accelerations Technique)
(Bateman et al., 1992). This method is based on the modal decomposition of the acceleration
time responses and utilizes the modal equilibrium equations for the rigid body modes.
Recently, Genaro and Rade (1998) studied a method which enables to extend the range of
application of SWAT method, by taking into account both rigid body and elastic modes.

Various types of orthogonal functions have been used for analysis, identification and
control purposes since the mid seventies, such as: Walsh functions (Chen and Hsiao, 1975),
Laguerre polynomials (Shih et al., 1986), Block-Pulse functions (Wang and Marleau, 1987),
Legendre polynomials (Chou, 1987), Chebyshev series (Mohan and Datta, 1988), Jacobi
polynomials (Horng and Chou, 1987), Fourier series (Chung and Sun, 1987) and Hermite
polynomials (Kekkeris and Paraskevopoulos, 1988).

The main purpose of this paper is to present an unified approach for the use of various
types of orthogonal functions for the identification of modal parameters and excitation forces
based on time domain responses of mechanical systems.

In the remainder, a brief description of the orthogonal functions used and the basic
formulation of the identification method are first presented. Then, numerical applications to
both numerically simulated and experimentally tested mechanical systems are shown, aiming
at illustrating the main features of the method.

2. ORTHOGONAL FUNCTIONS

2.1 Definitions

A set of functions { })t(iφ , i = 1, 2, 3, ... is said to be orthogonal in the interval [a,b] if:
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If Kmn is the Kronecker’s delta, the set of functions { })t(iφ  is said orthonormal. The
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where: [ ] ℜ∈ r,rP  is a square matrix with constant elements, called operational matrix

{ } { } T
r )t(...)t()t()t( φφφφ 110 −=  is the vectorial basis of the orthogonal series



In the following sections, the vectorial basis and operational matrix related to each type
of orthogonal function considered in this paper are briefly reviewed.

2.2 Fourier series

Vectorial basis in the interval [0,T] Operational matrix
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2.3 Shifted Legendre polynomials

Recursive formula in the interval [ ]t,t f0∈ Operational matrix
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2.4 Shifted Jacobi polynomials

Recurrence formula in the interval [ ]t,t f0∈ Operational matrix
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2.5 Shifted Chebyshev polynomials

Recurrence formula in the interval [ ]t,t f0∈ Operational matrix
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2.6 Block-Pulse functions

Vectorial basis in the interval [0,rT] Operational matrix
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2.7 Walsh functions

Vectorial basis in the interval [ ]t,t f0∈ Operational matrix
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3. FORMULATION OF THE TIME DOMAIN IDENTIFICATION TECHNIQUE

The proposed identification method can exploit either free or forced time responses, in
terms of either displacements, velocities or accelerations. Since the formulations for these
three types of responses are quite similar, only the formulation for forced and free systems, in
terms of displacements, will be presented in the following.

The equation of motion for a N d.o.f. system is given by:

[ ]{ } [ ]{ } [ ]{ } { })t(f)t(xK)t(xC)t(xM =++ ���     (2)



where [ ]M , [ ]C  and [ ] ℜ∈ N,NK  are, respectively, the inertia, damping and stiffness matrices

, { } ℜ∈ 1,N)t(x  is the vector of displacement time responses and { } ℜ∈ 1,N)t(f  is the vector of
excitation forces.

Integrating Eq. (2) twice in the interval [ ]t,0 , one obtains:
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where { })(x 0  and { })(x 0�  are the vectors of initial displacements and velocities, respectively.

The signals { })t(x  and { })t(f  can be expanded in truncated series of r orthogonal
functions as follows:

{ } [ ]{ })t(X)t(x φ= { } [ ]{ })t(F)t(f φ=     (4)

where: [ ] ℜ∈ r,NX  is the matrix of the coefficients of the expansion of { })t(x

[ ] ℜ∈ r,NF  is the matrix of the coefficients of the expansion of { })t(f

Substituting Eq. (4) in Eq. (3) and applying the integral property given by Eq. (1), the
following system of algebraic equations is obtained:
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In this equation, { } ℜ∈ 1,re  is a constant vector whose form depends on the particular

choice of the orthogonal series: for the Block-Pulse functions, { } { } Te 111 �= ; for

Fourier, Chebyshev, Legendre, Jacobi and Walsh series, { } { } Te 001 �= .

Solving system (5) for matrix [ ]H  one obtains the structural model of the system,

represented by matrices [ ]M , [ ]C  and [ ]K  and the set of initial conditions. A computationally
stable solution to (5) can be achieved by using the least square method combined with the
singular value decomposition technique.

If the free responses are used, a system of equations similar to (5) is obtained, with:
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As can be seen in the equations above, it is not possible to identify, separately, matrices
[ ]M , [ ]C  and [ ]K  when the free responses are used. However, regardless of the nature of the
responses, it is always possible to form the following state matrix, whose eigensolutions
provide the natural frequencies, modal damping factors and complex vibration modes of the
system:
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Due to practical constraints it is generally impossible to use the same number of sensors
as the vibration modes contributing in the response. Thus, in order to create oversized
mathematical models with a reduced amount of instrumentation, a technique named
Transformed Stations Technique has been used, together with the Modal Confidence
Factor (MCF). The MCF is used to separate the structural modes from computational ones.
Details are given in Pacheco and Steffen (1999).

4. FORCE IDENTIFICATION USING ORTHOGONAL FUNCTIONS

The approach for force identification is similar to that presented in the previous section
for the identification of modal parameters. Based on the assumption that matrices [ ]M , [ ]C

and [ ]K  are known, it is only needed to rearrange Eq. (5) for estimating matrix [ ]F  which
contains the coefficients of the excitation forces. In this case, the matrices in (5) are given by:
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Solving system (5) for the matrix [ ]H , it is then possible to identify the initial conditions
and the coefficients of the excitation forces.

5. APPLICATIONS

5.1 Modal parameter identification

The method was used for the identification of the modal parameters of the three-story
frame, shown in Fig. 1. In the low frequency domain, this structure behaves like a 3 d.o.f.
system.

For the purpose of comparison, the frequency response functions of the test-structure
were obtained using a spectral analyzer and impact excitation. These FRFs were then used for
estimating the natural frequencies and modal damping factors by using the half power
bandwidth method (HPBW).

Besides the three real measurement stations, six assumed stations were used. The modal
parameters obtained, compared to the values provided by the HPBW method, are presented in
Table 1. As can be seen, the large majority of the values of the identified modal parameters
are very close to those provided by the HPBW.



Figure 1 – Experimentally tested mechanical system

Table 1 – Identified modal parameters of the test-structure

f n1
 [Hz] f n2

 [Hz] f n3
 [Hz] ξ 1  (%) ξ 2  (%) ξ 3  (%)

HPBW 6.0254 11.751 18.124 0.847 0.672 0.469
Fourier

(r=55)
6.0481
(0.38%)

11.669
(0.70 %)

18.071
(0.29 %)

0.854
(0.86 %)

0.689
(2.53 %)

0.484
(3.24 %)

Chebyshev
(r=70)

5.8902
(2.24 %)

11.648
(0.88 %)

18.043
(0.44 %)

0.704
(16.87 %)

0.552
(17.90 %)

0.432
(7.90 %)

Legendre
(r=60)

5.9237
(1.69 %)

11.678
(0.62 %)

18.087
(0.20 %)

0.819
(3.29 %)

0.646
(3.89 %)

0.507
(8.10 %)

Jacobi
(r=73)

5.9145
(1.84 %)

11.718
(0.28 %)

18.072
(0.29 %)

0.838
(1.04 %)

0.704
(4.74 %)

0.482
(2.71 %)

Block-Pulse
(r=250)

5.9058
(1.98 %)

11.767
(0.13 %)

18.391
(1.47 %)

0.785
(7.27 %)

0.590
(12.14 %)

0.504
(7.45 %)

Walsh
(r=128)

6.0361
(0.18 %)

11.775
(0.21 %)

18.412
(1.59 %)

0.638
(24.69 %)

0.552
(17.80 %)

0.488
(4.15 %)

Fourier *

(r=45)
5.9546
(1.17 %)

11.697
(0.46 %)

18.053
(0.39 %)

0.843
(0.42 %)

0.744
(10.65 %)

0.393
(16.20 %)

Note: Percentual values in brackets indicate the relative errors w.r.t. the HPBW method
* Results using the response of the lower mass and four assumed stations

5.2 Force identification

To illustrate the use of the method for the identification of excitation forces, it was
applied to the 2 d.o.f. system shown in Fig. 2. The identification was performed in two steps.
In the first one, the structural model of the system (matrices [ ]M , [ ]C  and [ ]K ) was
determined using two supposedly known harmonic forces applied to the two masses. Then, in
the second step, this structural model was used for identifying different types of forces



(assumed to be unknown) applied to the system. In all the identification computations it was
assumed that the responses at coordinates 1 and 2 were available.
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Figure 2 – 2 d.o.f. mechanical system

First step: identification of the structural model. Two harmonic forces were
simultaneously applied to masses 1 and 2:

( ) [ ]N  t sin)t(f π21 = ( ) [ ]N  t sin)t(f π42 = ,  s.t 500 ≤≤

with the following initial conditions:
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The exact and the identified matrices, obtained by using the Fourier series with r = 31,
are the following (very little differences were noticed when using other orthogonal functions):
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Second step: identification of excitation forces. Two kinds of force were identified:
periodic and transient.

First case: periodic forces. The applied forces were:

( ) ( ) ( ) [ ]N  t sin t cos t sin )t(f πππ 20385221 ++=

( ) ( ) [ ]N  t cos t sin)t(f ππ 16442 +=

The exact and identified forces, obtained by using Fourier series (r = 105) and Block-
Pulse functions (r = 256), are presented in Fig. 3.

The values of the relative RMS identification errors are the following:
Fourier: % ,:)t(f 3101 , % ,:)t(f 7152 . Block-Pulse: % ,:)t(f 921 , % ,:)t(f 642 .

As can be seen in Fig. 3, the forces identified by using Fourier series exhibit the Gibbs
phenomenon which causes distortions at the extremities of the time window.



(a) (b)
Figure 3 – Exact and identified forces using Fourier (a) and Block-Pulse series (b)

Second case: transient forces. In this example, a short duration force, simulating an
impact force was applied to the mass number 1. The identification procedure was carried out
without prior knowledge of the actual location of the excitation, aiming at verifying the
capability of the method in identifying the input location. The exact and identified forces,
obtained by using Fourier series (r = 45) and Block-Pulse functions (r = 64) are presented in
Fig. 4. The values of the relative RMS identification errors for ( )tf1  are: Fourier: 4.8%,
Block-Pulse: 9.1%. As can be seen, the method was able to correctly identify the location of
the excitation force, as indicated by the comparative little force levels found for ( )tf2 .

(a) (b)
Figure 4 – Exact and identified forces using Fourier (a) and Block-Pulse series (b)

6. CONCLUSIONS

It has been shown how different types of orthogonal functions can be conveniently
employed for the identification of modal parameters and excitation forces in mechanical
systems, using straightforward computational procedures.

Combination of the transformed station technique and the orthogonal function
identification method provides a more suitable identification scheme for practical
implementation, since a reduced amount of instrumentation is required.
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All sets of orthogonal functions used have demonstrated the capability of providing fairly
accurate results, though Legendre, Jacobi and Chebyshev polynomials provided less accurate
force identification results, as compared to other orthogonal functions.

In the sequence of this work, it is intended to investigate the performance of the method
for force reconstruction when incomplete data are concerned, that is to say, when the number
of sensors are smaller than the order of the mathematical model.
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