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Abstract. The relative angles and the leading edge positions of a slat and a flap are obtained 
in order to maximize the lift coefficient of a multi-element airfoil. The flow over this complex 
configuration is calculated through a viscous-non-viscous interaction procedure. The 
potential flow is determined by using a panel method based on the  tangent dipole and on the  
vortex singularities associated with the stream function, which is used to impose the boundary 
condition. The boundary layer on the surface of each element is calculated through a 
computational code based on the integral equations. Such code is capable of analyzing 
laminar and turbulent flows and furnishing the friction coefficient and the displacement 
thickness, which is used to perform the viscous-non-viscous coupling. Two cases are analyzed 
and compared: a three-element airfoil and a flap-airfoil configuration. 
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1. INTRODUCTION 
 
 During some airplane operations, higher values of the lift coefficient (Cl) are interesting 
in order to fly at lower velocities. This is the case of take off and landing situations, where 
high-lift devices are used, such as flaps and slats (leading edge flaps). These devices are 
normally commanded by the airplane pilot, but in some cases an automatic operation is 
desirable, as for agricultural airplanes, because their operations require several curves of 180o, 
in order to spread agricultural products on an area of interest. Such curves must be as small as 
possible and have to be achieved at small velocities and with high lift coefficient.  
 The motivation of the present work is to obtain information for designing a simple 
high-lift device, which could be used in agricultural airplanes. This information can be obtained 
by using aerodynamic optimization and is very important to calculate the forces and moments 
acting on the slat and on the flap surfaces, which will be used to specify the mechanical device 
characteristics. The aerodynamic optimization mentioned above is performed numerically and 
the panel method is used to calculate the potential flow over a complex configuration. From 
the numerical point of view, the main concern when multielements have to be calculated is the



problem arising when one element is very near the other, as is the case for the configuration of 
the present work. The classical Hess & Smith (1966) scheme, with constant strength source 
and vortex panels, presents the above problem. In this work, a new scheme based on the 
tangent dipole singularity is used for the case of multi-element configuration. This method was 
already applied to a two-element configuration (profile with a flap) and good results were 
obtained, as can be seen in Girardi & Silva (1994).  
 The boundary layer flow is obtained by using the integral equation method, developed 
by Rotta (1971). The viscous-non-viscous coupling is made through a transpiration procedure, 
where new values for the normal velocity (different from zero) are used to enforce the 
boundary conditions, on the profile surface, in the potential flow calculation. These new values 
are obtained from the displacement thickness distribution, determined by the boundary layer 
code. 
 
2. NUMERICAL METHOD 
 
 The numerical method used in this work can be divided in two basic parts: (i) The first 
one is the calculation of the flow over a multi-element airfoil, where the potential flow is 
coupled to the boundary layer solution by using the transpiration procedure and (ii) the second 
part is the use of an optimization technique, which calls the first part in order to find the 
maximum lift coefficient for the configuration. 
 
2.1 Panel Method   
  
 In the potential flow over a profile, the Laplace equation must be solved subjected to 
boundary conditions at infinity (which are automatically satisfied by the singularity method) 
and on the profile surface. In the so-called direct problem, the boundary condition on the 
profile surface can be imposed in two different ways: The normal velocity must be zero or the 
stream function (Ψ) has a constant value on the profile surface. 
 For the numerical method developed in this paper, the tangent dipole panel was chosen 
for the flow modeling and the stream function is used to enforce the boundary condition. This 
choice guarantees a dominant main diagonal for the influence coefficient matrix and a well 
conditioned numerical problem. Two difficulties arise immediately due to the stream function 
use as boundary condition: (1) it can be shown (see Hunt, 1978) that for the external flow 
problem the tangent dipole distribution is not unique.  Hence, the influence coefficient matrix is 
singular. (2) The stream function value, which must be imposed on the profile surface as the 
boundary condition, is a function of the circulation as can be seen in Lamb (1932). Therefore, 
this stream function value is an unknown of the problem because the circulation value is 
unknown "a priori". The first difficulty can be overcame by fixing one value for the tangent 
dipole distribution, as discussed by Hunt (1978). Specifically for the panel method developed 
in this work, the last panel (number N) density is initially fixed with a unit value (µN=1.). 
Considering the above reasoning, the stream function at an arbitrary control point (Zck) is 
given by 
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where V∞ is the free stream velocity, α is the angle of attack and Fkj is the complex potential 
induced at the control point of a panel k (Zck) due to a panel j, which has a unit distribution 
density (µj=1.). The superscripts "d" and "v" indicate, respectively, that the complex potential 
is due to tangent dipole and vortex panels. The parameters Fkj can be found in Girardi (1999) 
and ZR is a reference point, where the complex potential is made equal to zero, as discussed by 
Girardi (1999).  

A constant value for the stream function (Ψ) must be imposed at the control points of 
all the panels, in order to satisfy the boundary condition on the profile surface.  Hence, 
equation (1) is a system of N equations, relating N-1 tangent dipole densities (µj; j=1, 2, ..., N-
1) and one vortex density (γ). On the other hand, the Kutta condition must be considered and 
the above unknowns are related by one more equation. Therefore, N+1 equations must be used 
to obtain N unknowns. 
 Considering the above problem, the second difficulty can be naturally solved. As the 
stream function value (Ψ) is unknown "a priori", it can be considered as the unknown that is 
lacking for the above problem to become a determinate one, that is, N+1 equations and N+1 
unknowns. 
 In the present work, the Kutta condition is imposed in the way used initially by Hess & 
Smith (1966), where the tangent velocity at the panels adjacent to the trailing edge are 
considered equal.   

A problem that is normally found in the flow calculation over a profile is the treatment 
of the trailing edge shape, which can be sharp or blunt (which is the normal case, due to 
practical reasons). In the case of a blunt trailing edge, the discretization has to be open (the 
surface of the trailing edge base is not considered) or it has to be artificially closed by using 
additional panels (Bristow & Goose, 1978). In the numerical method developed in the present 
work the problems associated to an open discretization can be minimized. As mentioned 
before, due to the non-uniqueness of a tangent dipole distribution for external flows, one of the 
panel strengths has to be specified and in the present method the panel number N was chosen. 
As mentioned above,  its value was specified initially equal to unit. Meanwhile, this value is 
arbitrary and for an open discretization a value lesser than 10-4 is required in order to avoid 
numerical problems, associated with abrupt panel strength variations at the trailing edge of a 
profile, as shown by Girardi (1994). 
 For the case where the lift force (circulation) is different from zero and an open 
discretization is implemented, it is necessary to analyze the vortex distribution to avoid 
numerical problems at the trailing edge. The classical way to introduce circulation around a 
profile is through a constant vortex distribution. However, to treat the case of an open 
discretization it is necessary to prescribe other distribution, where the vortex strength tends 
smoothly to zero for the panels at the trailing edge (panel numbers 1 and N). As in Girardi & 
Bizarro (1998), a cubic distribution was chosen for defining a weight function (WF) and, then, 
the vortex distribution is given by 
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where γj and WFj are, respectively,  the circulation density and the weight function value of 
each panel  along the profile surface and  γ  is a constant and, in fact, it is the only unknown of 
the circulation distribution. With this new distribution, the stream function at a panel k (given 
by eq. 1) has to be rewritten in the following form 
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2.2  Boundary Layer and Potential Flow Coupling 
 
 In this work, the boundary layer flow is obtained through the numerical method 
implemented by Rotta (1971). In such a method, the boundary layer equations in the integral 
form are used for calculating  laminar and turbulent flows.  Michael criteria (see Schetz., 1984)  
was implemented for determining the laminar-turbulent transition and good results were 
obtained.   
 As is well known, the pressure coefficient obtained from the potential flow solution 
(panel method) has to be used for the boundary layer calculation. Meanwhile, the results 
obtained with the potential flow code have to be adapted, in order to be read by the boundary 
layer code. Initially, the stagnation point location has to be determined on the profile surface, 
because the boundary layer calculation is started at this point. Then, the boundary layer code is 
called two times, once for calculating the upper surface and the other for the lower surface.  
 Two boundary layer code results are used in the present work: (i) the friction 
coefficient, for determining the friction drag through an integration along the profile surface 
and (ii) the displacement thickness, which is used to perform the coupling with the potential 
flow. Such coupling can be accomplished by implementing new values for the normal velocity 
(potential flow boundary condition), which models the boundary layer growth, through a 
transpiration effect. In the transpiration procedure, the normal velocity at the control point of 
each panel is a function of the displacement thickness growth, as shown in Bizarro (1998). In 
the same reference, a problem occurring at the trailing edge region is discussed, which is 
caused by an explosive growth of the displacement thickness. This problem can be minimized 
by a procedure presented in Bizarro (1998). 
 After the new boundary condition enforcement, the potential flow code gives a new 
pressure coefficient distribution, which is used to calculate the lift coefficient and the pressure 
drag. The total drag coefficient is then obtained considering the friction and the pressure items. 
 When flow separation is detected by the boundary layer code, such information is 
transferred to the main program, in order to be used by the optimization code. 
 
2.3 Optimization Method 

 
The optimization techniques can be mathematically stated as the following optimization 

problem: 

 
where x is a vector containing the design vaiables  and J, figure of merit of this problem, is the 
maximum lift coefficient for the three element configuration. The term gi(x) defines all the p-
constraints pertinent to the problem as described below. 

For obtaining the optimal profile configuration according to a specific aerodynamic 
figure of merit (maximal lift coefficient, maximal boundary layer transition, minimal drag 
coefficient, etc) which serves as the objective function, the numerical optimization procedure 
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Globex is used in this work, implemented by Jacob (1982). It employs a robust local  
minimization algorithm of a real valued function of several variables that converge quickly to 
the nearest relative extreme point and is insensitive to curved valleys and sharp ridges in the 
variables-criterion space. It can handle any type of constraint with no need for gradient 
evaluation since each time a constraint violation is detected, the optimization algorithm is 
signaled to provide a new set of variables until a set is obtained that violates no boundary.  

For aerodynamic optimization this is an advantageous strategy, besides its simplicity, 
since the gradients evaluation could have a prohibitive  computational cost due to iterative 
procedures or even impossible in some particular cases. The global extreme of the function is 
reached, with great likelihood, through the use of  a three step procedure based on a normally 
distributed random number. In the first step, the initial values of the variables are estimated. 
The vectorial mean value of these normally distributed  points as well the mean quadratic 
deviation is derived from the user initial points given. In each one of these points, a local 
extremization procedure is started. In the second step, around the variables that resulted in the 
best function value, once more normally distributed random numbers are generated and in each 
one of the these points a new local optimization is calculated. Once a better function value is 
found, this point is used as the new  mean value for another random search and the mean 
quadratic deviations are multiplied by 0.9 (localization of  the global extreme).  The best value 
of all in these steps is stored  and used as the initial value for a third optimization step. 
Although the global extreme can not be determined with absolute security, the probability is 
found to increases with the number of random estimated values. 
 
3. RESULTS 
 
 The methodology adopted in this paper was applied to a two and three element 
configuration. The two element airfoil, constituted by the main element and its flap, was 
originated from a MS 0313 airfoil. The three-element configuration was derived from the same 
airfoil and the slat shape developed by Girardi & Silva (1994). 
 The results presented below were obtained after the optimization procedure was 
applied for each angle of attack of the configuration, which is defined as the angle between the 
undisturbed flow and the main element chord line.  
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Figure –1  Three-element configuration. 
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A decrease of the Flap angle of attack  (αf) for the two element airfoil, while the 
configuration angle of attack (α) is incremented, can be observed in the Fig. 2. For lower 
values of α the only way for maximize the configuration lift coefficient is to increment αf . On 
the other hand, the increment of  αf is limited by the boundary layer separation on the  upper 
surface of the flap, which can be detected by the boundary layer code utilized in this work and, 
as mentioned before, this is one of the constraints imposed by the optimization technique. The 
high values obtained for αf indicate that the interference between the main element and the flap 
is very effective for preventing flow separation for lower α values. As is well known, this effect 
is caused because airflow coming from the main element lower surface is directed to the flap’s 
upper surface by the gap between the airfoil elements. The interference effect decreases while 
α is incremented, because a decrease of αf  is observed and this is caused by the flow 
separation on the flap surface.  
 During the optimization procedure, the flap leading edge position is varied to obtain the 
maximum Cl value for each angle of attack of the main element. This position is defined by the 
X and Y coordinates, relative to a reference system whose origin is located at the main element 
leading edge and which rotates with the configuration, in such a way that the X-axis is always 
coincident to the main element chord line.  

In the Fig. 3, it is possible to observe that in the range for α between 0 and 
approximately 10 degrees there is an increment of the X-coordinate and a maximum is reached 
for α  equal to 10 degrees. In the same range the Y-coordinate is approximately constant. 
These results indicate that the flap leading edge is moved backward in a direction parallel to 
the main element chord line. For angles of attack (α) greater than 10 degrees, the flap leading 
edge has to be moved downward and forward, as can be seen in the Figs. 4 and 3, respectively. 
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Figure –2  Flap angle of attack for a two-element airfoil. 
  
For the three-element configuration, the flap (αf ) and slat (αs) angles of attack (see 

Fig. – 1) are shown in the Fig. - 5 as a function of α. As for the case of a two-element 
configuration, the flap angle of attack decreases while α is increased, but the decrement of αf 
is less pronounced for the three-element configuration. The slat angle of attack is almost 
constant, with a value near –17 degrees. 
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Figure –3  Flap leading edge position (X coordinate) for a two element airfoil 
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Figure –4  Flap leading edge position (Y coordinate) for a two element airfoil 
 
 The leading edge positions for the flap and for the slat are shown in the Figs. 6 and 7, 
where X and Y coordinates are presented as a function of the configuration angle of attack. On 
the contrary to the two element airfoil (see Fig. 3), the X coordinate of the flap leading edge  
does not have a maximum value and, in fact, is approximately constant. Comparing Figs. 7 and 
4, one can see that the Y coordinate of the flap leading edge varies in a similar manner for the 
two and three element configurations. Therefore, for the three-element configuration the flap 
has to be moved only downward and this is an interesting result because the flap movement 
mechanism can be simplified. As can be seen in the Figs. 6 and 7, the slat leading edge position 
is almost constant up to the angle of attack considered, which is limited to situations where the 
boundary-layer separation in not allowed. The X coordinate for the slat leading edge position 



is near –0.25 (see Fig. 6), which was the forward limit for this coordinate. This result indicates 
that the extreme condition (maximum Cl) is reached when the slat is moved far from the main 
element. This occurs because the slat causes a decrement on the pressure coefficient peak on 
the main airfoil upper surface, near its leading edge, which is responsible for a decrement of the 
configuration Cl. On the other hand, the same influence on the pressure distribution is 
responsible for preventing boundary-layer separation on the upper surface of the main element 
and delaying the three-element airfoil stall. 
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Figure – 5  Angle of attack for the flap and for the slat of a three element airfoil 
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Figure –6  Leading edge position (X coord.) for the flap and for the slat of a three element 
airfoil 
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Figure –7  Leading edge position (Y coord.) for the flap and for the slat of a three element 
airfoil 
 
 The maximum lift coefficient (Cl max) for each angle of attack is presented in Fig. 8, 
where the two and three element configurations are compared. The negative slat interference, 
discussed in the preceding paragraph, can be clearly seen for greater angles of attack, where 
the Cl max value, for the three-element configuration, is lower than for the two element one. 
The maximum angle of attack calculated by the present numerical method was 18o for the 
two-element airfoil and 20o for the three-element configuration, showing the slat influence on 
the boundary-layer separation, over the main element upper surface.    
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure – 8 Maximum lift coefficient for the two and the three element configurations 
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4. FINAL REMMARKS 
 
 The panel method used in this paper performs very well for a multi-element 
configuration, although some numerical problems were detected when the distance between 
two elements was very small. Such a kind of problem was solved by using constraints which do 
not allow these situations.  
 Some scattering can be observed in the numerical results and this is a consequence of 
the probabilistic character of the optimization technique employed in the present work. 
Another possible cause for the above problem is the set of constraints which has to be specified 
in order to obtain realistics solutions. Some times, conflicts among constraints can lead to bad 
solutions. 
 A consistent solution for the angle and the leading edge position of the flap was 
obtained for the two and three-element configurations. On the other hand, the results 
calculated for the slat seems to have some problem, because only small variations are observed 
for the angle and for the leading edge position. A possible explanation for this problem is the 
relatively low values considered for the configuration angle of attack. This limitation is a 
consequence of the constraint, which does not allow boundary-layer separation and, up to the 
highest angle of attack considered in this work, the slat was not necessary to delay separation 
on the main element upper surface. In this case, the slat interference decreases the 
configuration lift coefficient and, then, the optimization procedure searches for a position in 
which this interference is minimized. 
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