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Abstract. A new hybrid numerical/experimental technique for stress assessment, which explores the 
influence of stresses on dynamic responses of structures, is  used for the identification of weld-
induced residual stresses in rectangular plates . This technique, named SIFDRIM (Stress 
Identification from Dynamic Responses - Inverse Method), consists of using modal properties, like a 
set of natural frequencies,  to identify the parameters of a given mode for the stress distribution 
over the plate. A parameterized stress model suitable to the case of welding residual stresses is 
presented, in terms of  a differential Equation that relates Airy’s stress function to the plastic 
strains resulting from the welding process. From this stress function, the stress components 

and (assuming plane stress state) can be assessed. To demonstrate the feasibility of the 
method, it is used tor the assessment of stresses in a  TIG (GTAW) welded thin rectangular steel 
plate,  based on  experientally measured natural frequencies and numerically computed weld-
induced stress distributions obtained from the literature. 
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1. INTRODUCTION  

 
The assessment of welding residual stresses is a topic of great technological interest, since these 

stresses influence, to a large extent, the quality of welded manufactured parts in terms of distortion, 
corrosion, buckling, crack initiation and propagation and mechanical resistance   (Parlane et al (4) ).  

The assessment of residual stresses is often a difficult task. Existing experimental techniques of 
stress analysis can be divided in two groups: techniques applicable to in-service structures, and 
those applicable to structures tested in laboratory environment. As examples of the first group, one 
can cite X-rays, Hole-center drilling, ultrasonic techniques, Neutron difraction technique and 
holography. On  the other hand, techniques intended to laboratory environment are, for instance, 
Extensometry, Photoelasticity and Moiré techniques. These experimental techniques have inherent 
drawbacks, like being costly and time consuming, being destructive or semi-destructive (which is 
the case of Hole-center drilling, for instance). Moreover, in most cases, stress measurements are 
provided at one point at a time, and are often restricted to specific types of materials (such as 
Transmission Photoelasticity). Numerical prediction of residual stresses is also difficult, due to the 
complexity of the welding process (Radaj (5)). 
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Recent works have proved that residual stresses influences the dynamic behaviour of welded 
structures (Kaldas and Dickinson(2) and Vieira Jr. et al.(6)). This characteristic indicates the 
possibility of using modal parameters obtained from dynamic tests (like a set of natural frequencies) 
to get information about the stress state within the structure. A method has been developed by the 
authors to perform this identification using optimization techniques to assess the parameters of a 
given stress model. This method has been applied to identify stress state of plates subjected to in-
plane loads in both theoretical and experimental studies (Vieira Jr. and Rade(7)). In the present work, 
it is investigated the use of  the method for the identification of weld-induced residual stress in a 
thin rectangular welded plate.  
 
2. THEORY 
 

Figure 1 illustrates the plate of dimensions htBL ×× , being also depicted an element which is 
acted upon by normal and shear stress components  and . yx σσ , xyτ
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Figure 1. Plate dimensions and stress components in an element of the plate 
 

According to Kirchhoff’s theory, the following assumptions are adopted: 
- plate thickness is small and constant. External faces are parallel to the middle plane 

(which is assumed to coincide with x-y plane); 
- cross-sections remain plane and perpendicular to the middle plane; 
- plane stress state is assumed, transverse shear stresses are neglected. 

 
According to the Rayleigh-Ritz method, the plate transverse displacement field is assumed to be 

expressed as a truncated linear combination of arbitrarily selected admissible functions. Following 
the approach adopted by Kaldas and Dickinson(2), these functions are chosen to be the 
eigenfunctions of vibrating beams satisfying the geometrical boundary conditions of the plate in 
directions x and y. Thus, one writes: 
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where p, q are the numbers of eigenfunctions considered in the truncated series in x and y 
directions, respectively; Aij are unknown generalized coordinates and ( )xiφ  and   designate the 
beam eigenfunctions. 
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According to Young(9), suitable beam eigenfunctions are combinations of trigonometric and 

hyperbolic functions of the form: 
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where Ai, Bi, Ci, Di, iη  Ei, Fi, Gi, Hi, iξ  are coefficients depending on the boundary conditions for 
the i-th vibration mode. Young(9) provides the numerical values of these coefficients for three 
combinations of boundary conditions: clamped-clamped, clamped-free and free-free. 
 

To obtain the eigenvalue problem, time-harmonic responses are assumed in (1), according to:  
 

( ) ti
ijij eAtA ω=  

 
The stationarity condition expressed in the Hamilton Principle, which relates kinetical and 

potential energies, is then enforced with respect to the qp ×  generalized coordinates ijA , leading to 
the following eigenvalue problem: 
 

[ ] [ ]( ) { } { }0=− rr AMK λ                                                                                                            (2) 
 
where the eigenvalues are related to the natural frequencies according to DLt rhr

42ωρλ =  and the 
eigenvectors { }rA are formed by the generalized coordinates ijA .  

The numerical solution of Equation (2) provides the natural frequencies of the plate subjected to 
the membrane stresses. The corresponding mode shapes can be obtained by introducing the 
eigenvector components ijA  into (1): 
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The general forms of the elements of matrices [ ]( qpqpK ⋅×⋅ ) and [ ]( qpqpM ⋅×⋅ )  are detailed in the 

following. 
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It should be noted that in the equations above, the indices must be contracted to obtain the 

matrix eigenvalue problem in the standard form, as given by (2).  
It should be also pointed out that the influence of the membrane stresses on the system dynamics 

is represented by the last term of Equation (4), which is referred to as  initial-stress stiffness matrix. 
As can be seen, this matrix is linear in the stress components. 
 
 

  



3. THE STRESS IDENTIFICATION METHOD (SIFDRIM) 
 

SIFDRIM is a hybrid numerical/experimental method which explores the fact that stress state 
influences the dynamic responses. Stress identification is treated as a paremeter identification 
problem, using parameterized models to represent the stress state. The identification is carried out 
by finding the values of the parameters that lead to the minimum value of a cost function that 
expresses de difference between model-predicted and experimentally measured natural frequencies 
(Vieira Jr. and Rade(7)). To predict the dynamic responses taking into account  the plate stress state, 
the Rayleig-Ritz approach, developed in Section 2, is used . For optimization, Genetic Algorithms 
are used.  
 
4. PARAMETERIZED STRESS MODEL FOR WELD-INDUCED RESIDUAL STRESSES 
 
 The development of welding  residual stresses can be mathematically modeled by the following 
differential Equation  (Kamtekar(3)): 
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 Hence, upon knowing the plastic strain distributions, it is possible to calculate the Airy’s stress 
function by solving Equation (6) and, then, to obtain the distributions of the stress components 
through the relations: 
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 In most of the cases, it is convenient to assess both Airy’s stress function and stress components 
by using numerical methods, such as Finite Difference Technique.  
 It was observed from various numerical simulations, that for the case of welding, the right-hand 
side R of Equation (6) often presents (with some approximation) the typical pattern shown in Figure 
2.a. In Figure 2.b, it can be seen how this special feature can be explored in the development of a 
parameterized model of the right-hand-side term R in Equation(6), which presents the very desirable 
characteristic of depending on a few parameters ( and ). It is important to point out that the 
possibility of modeling the term R of Equation (6) is equivalent to be able to model the Airy’s stress 
function and, as a result, the stress components and . Nevertheless, this approach gives 
rise to the additional need of solving Equation (6) by numerical procedures, such as the Finite 
Difference Method.   
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Figure 2. (a) – Proposed model for the distribution of the right-hand side R of Equation (6);  (b) – 

Characterization of the proposed parameterized model in terms of parameters p1, p2 e p3 
 
 After the initial development of the three-parameter-model for R, it was proposed to introduce 
an additional parameter  which makes it possible to consider a function R  that is not necessarilly 
constant along the plate length (x axis). Each element of R  in the finite-difference mesh, denoted by 

,  must undergo a correction that depends on  which expresses the characteristic pattern of the 
variation of R with the x axis, according to Equation (8). Figure 3 displays the shape of the 
correction matrix C along the x axis. 
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where: 
ijC  : correction coefficient applied to Rij; 

( 32 ,, pppR iij ) : Element of the right-hand side R  before the correction by (like in Figure 
2.a) 
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Figure 3. Shape of the correction matrix Cij  along the x axis 

 
 
 
 
 

  



5. APPLICATION EXAMPLE 
 
5.1 Studied Case 
 As an application example of SIFDRIM, it was chosen the case studied by Kaldas and 
Dickinson(2), of a 254 × 508 × 3.175 mm TIG (GTAW) welded plate. The dimensions, material 
properties and welding conditions are shown in Figure 4. In that work, welding residual stress 
distributions were assessed by using numerical simulations based on the Finite Difference 
Technique . Those authors provided two-dimentional graphics of the stress components  and 

along some specific plate sections. Natural frequencies were both numerically and 
experimentally obtained. In the numerical assessment, it was used the Rayleigh-Ritz Method. The 
numerically obtained and the experimental values of the ten first natural frequencies are listed in 
Table 1, considering two conditions concerning the stress state: stress-free and with welding 
residual stresses. 
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Figure 4. Plate dimensions, material properties and welding conditions (based on data provided by 
Kaldas and Dickinson(2)) 

 

Table 1. Numerically and experimentally obtained natural frequencies (from (Kaldas and 
Dickinson(2)) 

 Stress-free With welding residual 
stresses 

Vibrating Numerically Experimental Numerically Experimental 
mode obtained  obtained  

 (Hz) (Hz) (Hz) (Hz) 
1 66.3 66.1 52.3 51.7 
2 82.6 82.3 61.8 60.9 
3 182.0 179.6 145.4 141.2 
4 184.0 180.0 165.2 160.7 
5 271.0 263.0 266.1 256.7 
6 319.0 305.0 275.0 265.4 
7 322.0 313.0 324.9 316.4 
8 365.0 360.0 351.1 347.0 
9 447.0 429.0 457.7 438.4 
10 498.0 488.0 449.2 440.7 

 
 
 
 

  



5.2  Initial Estimates to the Stress-Model Parameters 
In a previous work of Vieira Jr. and Scotti(8), it is possible to find a metodology of obtaining 

estimative values of the stress-model parameters. Using that technique, and considering its 
incertainities, it was proposed the range of variation to the stress-model parameters expressed in 
Table 2.  
 

Table 2. Variation ranges to the stress-model parameters 
Parameter Lower limit Upper limit

1p  7101 −×  4101 −×  
2p  0.00 0.05 
3p  0.20 0.30 
4p  0.20 0.40 

 
5.3 Cost Function 
 The following cost funtion was defined so as to take into account the well-known steel-welding 
feature that Von-Mises stress, in the middle of the welding bead, is equal to the yelding stress limit. 
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where: 
 : Cost function; objF

   : Number of  natural frequencies used as input data; fn

  : i-th calculated natural frequency; c
if

 : i-th measured natural frequency; m
if

 ( 0,2Le )σ :  Von-Mises stress in the middle of the welding bead; 
  : Yelding stress limit of steel (assumed value: 246 Mpa) yf

 
6. RESULTS 
 

Table 3 displays the stress-model parameter values obtained with SIFDRIM, and the setup 
numbers of individuals and generations used in the Genetic Algorithms program, as well as the final 
value of the Cost Function. Figures 5 and 6 show the graphics of stress components  and , 
related to the identified stress-model parameters. For comparison, the same figures present the 
stress components resulting from welding numerical simulation, obtained by Kaldas and 
Dickinson

yx σσ , xyτ

(2). Table 4 allows to compare the frequencies used as input data and those related to the 
identified stress state. 

 
Table 3.  Stress-model parameters obtained with SIFDRIM, Genetic Algrithms setup and 

final Cost Function value 
 Number of individuals 1000 
Genetic Algorithms Number of generations 50 
 1p  5106231.1 −×  
Identified  2p 0.0041 
parameters 3p 0.2204 
 4p 0.2763 
Final Cost Function value 0.0486 
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Figure 5. Comparison between  the stress components obtained with SIFDRIM  and those obtained 

by using welding numerical simulation (Kaldas e Dickinson(2)) 
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Figure 6.  Comparison between  the stress components obtained with SIFDRIM  and those obtained 

by using welding numerical simulation (Kaldas e Dickinson(2)) 
 
 
 
 
 
 
 
 
 
 
 

  



Tabela 4. Comparison between calculated natural frequencies  (related to the identified stress state) 
and the experimental values of natural frequencies used as input data 

Vibrating Natural frequencies (Hz) Percent 
mode Calculated Experimental variation (%) 

1 54.13 51.70 4.70 
2 63.25 60.90 3.87 
3 155.14 141.20 9.87 
4 166.55 160.70 3.64 
5 264.80 256.70 3.16 
6 289.65 265.40 9.14 
7 324.34 316.40 2.51 
8 352.38 347.00 1.55 
9 458.79 438.40 4.65 
10 464.80 440.70 5.47 

 
 

7. CONCLUDING REMARKS 
 
 The results allows to conclude about the feasibility of applying the identification method 
SIFDRIM to the case of welding residual stress assessment. Good agreement was found between 
stress components obtained with SIFDRIM (using experimental natural frequencies of the welded 
plate) and those resulting of numerical welding simulations. Nevertheless, additional tests have 
shown that  the problem of identification of welding residual stresses presents the characteristic of 
non-unique solution, which means that two different stress states can lead to the same set of natural 
frequencies. In the case of steel welding, this drawback can be easily overcome by considering, as 
an additional imformation, the  fact that Von-Mises stress, in the middle of the welding bead, is 
equal to the yelding stress limit of the material. It is believed that the method can be extended to 
structures others than plates.  
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