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Abstract. The conversion of primary fossil fuels, such a&l emd gas, to electricity is a relatively ineféait process.
Even the most modern combined cycle plants canamtlieve efficiencies of between 50-60%. A gredigroof the

energy wasted in this conversion process is ret&sehe environment as waste heat. The principlsombined heat
and power, also known as cogeneration, is to recavel make beneficial use of this heat, signifisandising the

overall efficiency of the conversion process. Hawethe optimal utilization of multiple combinedaheand power
systems is a complicated problem which needs polvedthods to solve. This paper presents a fislodcbearch

(FSS) algorithm to solve the combined heat and p@wenomic dispatch problem. FSS is a novel apgraacently

proposed to perform search in complex optimizafiowblems. Some simulations presented in the liteeaindicated

that FSS can outperform many bio-inspired algorshmainly in multimodal functions. The search pesci FSS is
carried out by a population of limited-memory inidivals — the fishes. Each fish represents a passblution to the
problem. Similarly to particle swarm optimizatiom genetic algorithm, search guidance in FSS is @hivby the

success of some individual members of the populatidour-unit system proposed recently which lieachmark case
in the power systems field has been validated@ssa study in this paper.

Keywords: optimization, heat and power economic dispatcétaieuristics, fish school search.
1. INTRODUCTION

Several biological and natural processes have lstemgly influencing the methodologies in scienaed a
technology in the last years. Nature inspired ligiehce becomes increasingly popular through theeld@ment and
utilization of intelligent paradigms in engineeridgsign. In this context, the evolutionary mechasigliscovered by
Darwin and described ifthe Theory of Natural Evolutio(Darwin, 1858) inspired several research fieldgshsas
evolutionary computation and swarm intelligence evdin, to solve a desired problem, it is not nemgsgrevious
knowledge of the way for achieve the solution.

Evolutionary algorithms are stochastic search tisss the principles of evolution of nature to drikie search
towards optimal solution. Compared to traditiongtimization methods, evolutionary algorithms arbust, global, and
may be applied generally without a prior knowledgeut the problem to be optimized.

On the other hand, swarm intelligence is a recesearch field, which has recently gained a wideufzojty.
Algorithms belonging to this field, draw inspiratidrom the collective intelligence emerging frone thehavior of a
group of social insects (like bees, termites andpsja Many optimization approaches have been us#tkilast years
such as Particle Swarm Optimization (PSO) (Kenreay Eberhart, 1995; Eberhart and Kennedy, 1995),Catony
Optimizations (ACO) (Dorigo and Stutzle, 2004), iictal Bee Colony (ABC) (Karaboga and Akay, 200@)mong
others.

As the other mentioned swarm intelligence techrsdugsed on swarms, metaheuristics based on fistmshave
been proposed in the recent literature, such agigsheswarm algorithm (Xiaolei et al., 2002), thshf school search
(Bastos Filho et al., 2008), and the fish swarnedligm based on chaos search (Ma and Wang, 2009).

In Fish School Search (FSS) proposed in Basto® Fthal. (2008), the fish school creation phenomeren be
viewed under two distinct aspects: mutual protecmd synergy in collectively executing tasks. Tisé school
decreases the probability of success of the predaiarantying the survival of great number of indials. The
synergy is related with the ease in finding fooddlh fishes in the school.

In the search process in the FSS algorithm eabhrdisresents a possible solution for the problesriha particles
in PSO algorithm and the individuals in Genetic &ithms. In order to explain the FSS, some initiahcepts need to
be defined: the aquarium is the search space whéheifishes are positioned and able to move. ©bd flensity is
related to the objective function to be optimizedtihe sense that as the food density decreasesjathe of the
objective function becomes worse.

In this paper, the FSS is used to solve an econdmaid dispatch problem, which is an important peatlin
electrical power systems. The thermoelectric plamés often used to supply the demand of power maiiiere is
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impracticable to construct a hydroelectric planawéver convert natural gas in electrical energwnsin-efficient
process. The most modern plants have an efficieh®®-60% in this conversion (Vasebi et al., 2007).

The thermoelectric generation, as well as otherguogeneration processes, causes environmental isnpad
contributes to the global warming. The natural lgasiing produces pollutants and also uses fossli] iinnrenewable
fuel source, as input.

Considering these aspects of power generation fossil fuel, many efforts in the sense of optinmize generation
and distribution of energy have been carried oute ©f the main focus of study in power generatigstesns is the
economic dispatch (ED). The aim of the ED problemai traditional thermoelectric plant is to find thetimal
operation point that supplies the demand while mirés the fuel cost (Subbaraj et al., 2009).

The rest of this paper organized as follows: sec®i@xplains the concepts of the FSS algorithnthénsection 3 are
the description of the test problem, section 4 shthwe result of the simulations and finally a cosan is made in the
last section.

2. FUNDAMENTALSOF FISH-SCHOOL SEARCH ALGORITHM

Several studies related to fish schools have beesepted in the literature, such as Niwa (1996}ddnd et al.
(2004), Zheng et al. (2005), Viscido et al. (20B807), and Adioui et al. (2003).

The main characteristics observed in a fish scaok incorporated to the search process of the d&&Sithm.
They can be divided into two groups: feeding andrsning. The feeding process consists, inspiredhia natural
instinct of each fish, of finding food to guaranfesown survival (note that the food is a metaploorthe candidate’s
value in the search process). The swimming procasde divided in three different stages: the fsghe mimetism,
where individuals move collectively in the directiof most increasing in the food density foundtia previous stage
of the search, the second is the individual stadmere each fish makes, randomly, a movement withllsamplitude,
and the last is the expansion and contractionetharm, the function of this behavior, despitgitsved existence, is
not explained in the real fish schools, but, indlgorithm, aid to avoid local minima.

The FSS simulates the behavior of fish schoolsXegeating these steps: (i) a first individual mowdere each fish
executes a small randomly movement, which is lichitie the fact of to be in a fish school; (ii) arstinctive
movement in the direction of the food, motivatedthg better efficiency of the other fishes in theyious stage; and
(iii) the last movement described as the collectivbtive movement of the fish school, given by tantinuation of the
movement in the direction of the food. Figure 1vghiohe overall procedure of FSS.
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Figure 1. Overall procedure of FSS.
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The feeding operation is used in order to evaluwdiether the fish is in a good place or not. Thisnizdeled by
assigning for each fish its weight, i.e., if a fistin a good place (good solution) then its weigharger and if the fish
is in a poor place then its weight is fewer. Equat{1) mathematically describes this step of tilsb-fchool. This
equation is given by

W+ =W (0 + fx (t+1)] - f[x(1)] 1)
' ! max{] f[x (t+1)] - fx(t)] [}

where x; (t) is the position of fisH at timet and f[x(t)] is the amount of food in positiog (t) .

The swimming operator mathematically describegtihee steps observed, previously described, ifisheschool
movement. The individual movement is a random ma@mallowing a complete scan of the search spahbe.
collective-instinct can be described as when abétbd source is found, the school instinct istwve in that direction
(equation 2). Mathematically speaking, the fishasttmoves in the direction of the weight's averajfehe school.
Fishes that find more food become heavier. So ¢néec of mass of the school trend to the places mitre food.

3 M¢pa  F%(E+D] - T X(O]
X (t+D) = (1) + = @
(1% D)= 0]

where AX,,; represents the average of the individual movemmatse in the previous iteration. This representaiso

only valid for the restriction that if the movemarita fish leads to a worse position than the mrewvior to an infeasible
position then the movement is discarded. The dbllewolitive movement is a small movement aftez tollective-
instinct, the desire of the school in achieving fined, and can be a contraction or expansion mowernifethe average
of the weight increases, i.e. the fishes have iwvguotheir objective function values, then the f&thool contract
(equation 4), otherwise expands (equation 5) ireotd scan a bigger area looking for food. In t@se, the equations
are given by

Bary(t) = Zil\il\M 0 (3)
% (t +1) = X (t) — steR, (Fand [ (t) — Bary(t)] (4)
X (t +1) = % (1) + steRes Hand [, (1) - BarY(t)] (5)

where step is the volitive stepBary is the fish-school's barycenter (center of masgjrand is a uniformly
distributed number in the range [0,1].

3. FORMULATION OF OPTIMIZATION PROBLEM

One of the types of the ED problems is the combimeat and power economic dispatch (CHPED), whidihes
case studied in this work. The objective of the EBPproblem is to minimize the cost of productiorbjsat to the
demand supply, heat and power demand, with techimalb and physical constraints for each generatimit
considering dependent production.

The benchmark study of CHPED evaluated in this pages originally proposed in Guo (1996). Many tagoes
have been proposed in the literature to solvepfoblem: Lagrangean relaxation (Guo, 1996), geradgjorithms (Song
and Xuan, 1998; Sudhakaran and Slochanal, 2003a®apet al., 2009), ant colony (Song et al., 1988yl harmonic
search (Vasebi et al., 2007).

The test system consists of a plant of electriggneration, two plants of co-generation and a ptinbeat
generation. The objective is to find the minimunstcéo achieve the heat and power demands whilsfgat
constraints imposed by the problem optimizing 6iglen variables. In figures 2 and 3 are presentedcbnstrained
region for the co-generation plants, respectively.
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Figure 2. Feasible region for the second unit efgtudy case (Vasebi et al., 2007).
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Figure 3. Feasible region for the third unit of ttedy case (Vasebi et al., 2007).

The objective functioiC to be minimized is given by:

4

C=3q, i=1.4 (6)
i=1

where
¢ =50p, 7
C, = 2650+ 145p, +0.0345p,2 + 4.2h, + 0031p,h, ®)
C3 =1250+ 365 +0.0435p52 + 0.6hg + 0027h5 + 0011pshg (9)
Cy = 234h, (10)
The following constraints are adopted:
0< py, P2, P3 <150 MW (11)
0<h,,hg,hy £26952 MWth (12)
Po=ptp2+ps (13)
HD=h2+h3+h4, (14)

where p; and h are the power and the heat outputs, respectieélhei-th unit. The heat demand is 115 MWth and

the power demand is 200 MW. In this paper, a pgraliction is adopted to handle the constraintegiley equations
(12)-(14). In this way, deviation from the constitais added to the objective function such thahaatfeasible solution
is penalized by a large penalty term proportionaht deviation.

4. SSIMULATION RESULTS

The FSS approach was implemented in MATLAB (MathWéprTo illustrate the effectiveness of the FSSrapph
30 runs were performed. The parameters for thei#S8 set empirically, i.e., for each algorithm arer of tests with
different parameter settings were carried out &iedrésults were compared. The best settings wasenohas shown in
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Table 1. Also, FSS is compared to the canonicakteralgorithm (GA). The GA settings were adjustedthe
following values: crossover rate was 0.8, popufatize was 30 individuals, stopping criteria wa8@ @enerations and
the adopted mutation operator was the Gaussiaterins of constraint handing strategy, a penaltyapater based
method presented in Subbaraj et al. (2009) to pEnmifeasible solutions was used.

Table 1. Settings of control parameters in FSS aqupir.
Parameter Value
Number of iterations (generations) 1000
Population size 30

Initial individual step 5

Final individual step 0.01

Initial collective step 1

Final collective step 0.01

Table 2 presents the results of FSS and GA appesaichterms of convergence (30 runs). FSS obtasneérior
performance than the GA in terms of minimum and meast. The best results using FSS is equal torehelts
presented in Subbaraj et al. (2009) using self@dapeal-coded genetic algorithm (SARGA) in terofisninimum cost
(see Table 3). On other hand, SARGA presentedrbaitesergence rate than the FSS and GA approachssryied in
this paper.

However, the optimal solution of cost functi@madded to the penalties depends on penalty paratoeieg. Users
usually have to try different values of penaltiedues to find which value would steer the searetatds the feasible
region. In this paper, the procedure to obtainifdasolutions using FSS in terms of inequality agdiality constraints

was a very time consuming task and hard to convengards near-optimal solution presented in Vastlal. (2007)
and Subbaraj et al. (2009).

Table 2. Results of optimization after 1000 itevasi (generations) in 30 runs.

Method Minimum cost (%) Maximum cost ($) Mean c(t Standard deviation of cost
FSS 9257.07 11451.23 11084.72 21.05
GA 11567.40 11687.14 11663.85 24.17

Table 3. Best configuration of the units using FSS.
Decision Variables| Representatipn FSS SARGA

p1 X1 0.00 0.00

o Xo 159.99 159.99

o8 X3 40.01 40.01

h, X4 39.99 39.99

hs X5 75.00 75.00

h, X6 0.00 0.00
Objective function C 9257.07 9257.07

5. CONCLUSION

The use of optimization algorithms in several aggilons in almost all areas is growing due the s&te of
increase profit, minimize costs and wastes. Also,the energy sector, exists the importance of mg@nthe
environmental impact caused by the power and heatrgtion in thermoelectric plants.

The low computational cost and the capability ofp@tdto complex search spaces is the main charstiteriof
natural computing algorithms as the swarm-basedriétigns. The particularities presented in the FSfkemit a good
option to solve complex problems as the CHPED gnobl

The proposed FSS evaluated in this paper presentedising results to a CHPED. In future works, nfigdtions
in FSS can be useful for a balance between explarand exploitation of the search space. Alsohois of adaptive
tuning of FSS control parameters can be used tatainithe diversity of fish swarm.
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