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Abstract

This paper presents a simple portal frame structure of nonlinear behavior under internal
resonance conditions. The equations of motion of a simplified two degree of freedom model
are obtained via a Lagrangian approach. Free undamped and resonant forced damped
vibrations are analyzed for several energy levels to show the onset of chaotic motions in both
cases. Poincaré Maps and Lyapunov exponents are obtained and commented upon. Possible
application to real civil engineering structures is suggested.
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1. INTRODUCTION

       This paper is concerned with the study of free and forced nonlinear vibrations of
structures under internal and external resonance conditions for several energy levels. We
search for examples of practical civil engineering problems for which chaotic motions may
occur.

       The nonlinear vibrations of frames have been investigated by a number of researchers. As
early as 1970, Barr and McWannell (1970) studied a frame under support motion, but
nonlinear elastic forces were not taken into account. Yet, these are extremely important and
affect qualitatively and quantitatively the analysis.  Brasil and Mazzilli (1990) studied the
related problem of a framed machine foundation of similar geometry. They recast the
problem, considering both inertial and elastic nonlinear effects, including that of the
geometric stiffness of the columns and geometric imperfections, such as the elastic
deformations of the frame, before the excitation would come into action. Some other studies
of nonlinear oscillations of other portal frames under a single ideal harmonic excitation will
be found in several papers by Brasil and Mazzilli (1993, 1995). Another study of a structure
under several ideal harmonic loads is presented by Brasil (1999). An extension to the non
ideal case (limited power supply) will be found in Brasil and Mook (1994).

       Here, another related problem of considerable practical importance is presented. A simple
portal frame with two vertical columns and a horizontal pinned beam is considered. If linear
behavior should be adopted, the two first vibration modes, anti-symmetrical  (sway) and
symmetrical, respectively, would be uncoupled. In our model, consideration of the shortening
of the bars due to bending render a set of two coupled nonlinear equations of motion derived
via a Lagrangian approach. Next, the physical and geometrical characteristics of the frame are
chosen to tune the natural frequencies of these two modes into a 1:2 internal resonance.
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Modal saturation and energy transference due to internal coupling and external resonance are
observed at certain levels of excitation.

       To study the possible onset of chaotic motions, two cases are considered.

a) Undamped free vibrations with initial conditions exciting each one of mode separately. As
the system level of energy increases, the other mode is set into motion due to the internal
coupling with regular interchange of energy between the modes. Further increase of energy
will cause irregular motions (chaos).
b) Damped forced vibrations due to ideal harmonic excitation resonant with each one of the
modes separately. As the system level of energy increases, the other mode is set into motion
due to the internal coupling with regular interchange of energy between the modes. Further
increase of energy will cause irregular motions (chaos).

2. PROBLEM DEFINITION

2.1 The Model

       The portal frame in Fig. 1 is considered in the analysis. It has two columns clamped at
their bases with height  h  and cross section moment of inertia  Ic , with concentrated masses
m  at their tops. The horizontal beam is pinned to the columns with  length  L  and cross
section moment of inertia  Ib . A linear elastic material is considered whose Young modulus is
E . The structure will be modeled as a two-degree-of-freedom system.  q1  is related to the
horizontal displacement in the sway mode (with natural frequency ω1) and  q2  to the mid-
span vertical displacement of the beam in the first symmetrical mode (with natural frequency
ω2). The stiffness related to these modes are  kc  and  kb, respectively. Geometric nonlinearity
comes from shortening due to bending of the columns and beam, given by  ∆ h  and ∆ L . In
the forced vibration case, an unbalanced motor, with total mass M, is placed at the mid-span
of the beam. The angular velocity of its rotor is given by Ω rendering an harmonic excitation.
Coefficients of modal linear viscous damping  c1  and  c2  may be adopted.

Figure 1. The model portal frame

       The two non dimensional generalized coordinates of this model are chosen to be
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where u2 is the lateral displacement of  M  in the sway mode, and v2 is its vertical
displacement in the first symmetric mode.

       The linear stiffness of the columns and of the beam associated to these modes can be
evaluated by a Rayleigh-Ritz procedure, rendering:
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       The geometric nonlinearity is introduced by considering the shortening due to bending of
the columns and of the beam as:
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were, by the same Rayleigh-Ritz consideration as before,
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2.2 The Equations of Motion

       To derive the equations of motion, the generalized Lagrange's Equations will be used.
The kinetic energy and the total potential energy (including the work of the conservative
forces) are, respectively,
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rendering, for damped forced vibrations the following two equations
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E1(t) and E2(t) are time ideal forcing functions to be defined in each case.
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3. NUMERICAL SIMULATIONS

       In order to search for possible irregular oscillations in this model, numerical simulations
are carried out and their results presented in this section. To that end, Equations 7 and 8 are
transformed into a set of four first order differential equations. Next, they are numerically
integrated using a Runge-Kutta algorithm and  Poincaré Maps (PM) are presented to
characterize the geometry of the dynamics of this model. Lyapunov Exponents (LE) are also
calculated to confirm possible chaotic motions.

3.1 Free Undamped Vibrations

       Here, damping is neglected and no forcing functions are considered, leading to free
vibrations resulting of several initial conditions. These change the level of energy imparted to
the system and may excite directly only one of the two modes. Nevertheless, due to internal
resonance, this energy may be passed back and forward  between the modes.

       First, initial conditions are set to directly excite only the first (sway) mode at a relatively
low level of energy. Figure 2a presents the related PM in the q1 x q1’ plane (with q2=0 and q2’
> 0). If the energy imparted to the system is increased, a certain point is reached so that this
same PM, shown in Fig. 2b, displays a chaotic character, confirmed by the LE calculation.

Figure 2a Figure 2b

       It is interesting to note that Poincaré Maps  in the q2 x q2’ plane (with q1=0 and q1’ > 0)
for this case, shown in Figures 3a and 3b, for the same two levels of energy,  present chaotic
motions too.

Next, initial conditions are set to directly excite only the second (symmetric) mode at a
relatively low level of energy. Figure 4a presents the related PM in the q1 x q1’ plane (with
q2=0 and q2’ > 0). If the energy imparted to the system is increased, a certain point is reached
so that this same PM, shown in Fig. 4b, displays a chaotic character, confirmed by the
calculation of the LE.
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Figure 3a Figure 3b

Figure 4a Figure 4b

       It is surprising to note that Poincaré Maps  in the q2 x q2’ plane (with q1=0 and q1’ > 0)
for this case, shown in Figures 5a and 5b, for the same two levels of energy, do not present
chaotic motions.

Figure 5a Figure 5b
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3.2 Damped Forced Vibrations

       Now linear viscous damping is adopted and harmonic forcing functions are considered
with fixed Ω frequency and may be made to be resonant with only one of the two modes.
Nevertheless, due to internal resonance,  energy may be passed back and forward  between the
modes.  Amplitude of these functions are also increased gradually, searching for chaotic
motions.

       First,  we set Ω ≅  ω1 to directly excite only the first (sway) mode at a relatively low
amplitude. Figure 6a presents the related PM in the q1 x q1’ plane (with q2=0 and q2’ > 0). If
the amplitude is increased, a certain point is reached so that this same PM, shown in Fig. 6b,
displays a chaotic character, confirmed by the calculation of the LE.

Figure 6a Figure 6b

       It is interesting to note that Poincaré Maps  in the q2 x q2’ plane (with q1=0 and q1’ > 0)
for this case, shown in Figures 7a and 7b, for the same two amplitude levels, also present
chaotic motions.

Figure 7a Figure 7b
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       Next,  we set Ω ≅  ω2 to directly excite only the second (symmetric) mode at a relatively
low amplitude. Figure 8a presents the related PM in the q1 x q1’ plane (with q2=0 and q2’ > 0),
showing only two plotted points for the steady state regime. If the amplitude is increased, as
shown in the MP of Fig. 8b, the same two point pattern is observed, with no chaotic motions.
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       Similarly,  we note that Poincaré Maps  in the q2 x q2’ plane (with q1=0 and q1’ > 0) for
this case, shown in Figures 9a and 9b, for the same two amplitude levels, present only
periodic motions.
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4. CONCLUSIONS

       A two degree of freedom model of a simple portal frame of geometric nonlinear behavior
was studied for free and forced vibrations. Conditions of internal resonance were set, allowing
for exchange of energy between the modes. The increase of  the level of energy imparted to
the system lead to chaotic motions in certain situations, as shown via Poincaré Maps and the
calculation of Lyapunov exponents. Extension of this work for non ideal sources of energy is
in its way and will be reported in the future.
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