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Abstract. Computational fluid mechanics with finite volume method needs high-quality computational meshes that can
be structured or not. When properly constructed, structured meshes provide several advantages over unstructured ones
as, for instance, (i) higher metrics quality, (ii) a corresponding matrix of fixed bandwidth and (iii) a straightforward
numerical implementation due to a simple and effective variable indexation. However, their lower adaptability to complex
geometries can be considered as their main drawback. On the other hand, unstructured meshes are more flexible with
respect to geometrical topology, at the expense of some loss regarding the advantages cited above. As a matter of fact,
the non-collinearity between the center-to-center vector of adjacent cells and the normal vector of the face that connects
these cells makes difficult the approximation of the gradient of a field at the face. A common procedure to overcome this
problem uses a non-orthogonality correction. In this work, a methodology to compute to compute this correction taking
account the mesh skewness was implemented and tested. It aims to obtain an iterative method that preserves second order
of accuracy for the local approximation of the variables and their gradients on the mesh. Two test cases were addressed
and the results compared to that obtained via the CFD softwares OpenFOAM R© and ANSYS Fluent R©.

Keywords: Numerical methods; Unstructured Meshes; Nonorthogonality correction; Skewness correction; Finite Volume
Method

1. Introduction

In real-life engineering applications, several physical and chemical phenomena are modelled by the continuum me-
chanic equations, e.g. those related to incompressible and compressible flows, multiphase flows, reactive flows, combus-
tion and fluid-structure interaction. In the past decades, the continuous advances on computational means along with the
development of numerical methods to solve these systems of equations in complex geometries allowed the simulation
of real-life problems of engineering and enabled the diffusion of the so-called Computational Fluid Dynamics (CFD) in
companies and research centers.

Among these numerical methods, the finite volume method (FVM) is among the most important (Hirsch, 1991;
Patankar, 1981) and is the main method implemented in several dedicated softwares such as ANSYS CFX, ANSYS
Fluent, StarCCM, CFD++ and OpenFOAM, the latter being open source. The main characteristic of the FVM, which is
responsible for its disseminated use in CFD methods, is its flexibility using in generalized meshes. The method does not
impose any constraints to the structure of the mesh neither to the type or form of its elements. In other words, the method
has support to structured or non structured polyhedral meshes (Jasak, 1996).

Particularly, the advances in methods for automatic generation of unstructured meshes experienced in the past decades
significantly facilitated the mesh generation for complex geometries. However, this type of meshes frequently has lower
quality when compared to the structured ones. Two metrics frequently used to measure this quality are the (i) mesh
non-orthogonality and (ii) skewness (Boris and Book, 1973; Leonard, 1979). These two metrics are strongly associated
with numerical errors in the numerical solution calculated via FVM . It has to be noted that, if not corrected, the order
of accuracy of the spatial discretization is likely to be degraded. A common procedure to overcome this problem uses a
non-orthogonality correction.

In the present work, a methodology to compute the non-orthogonality correction including the skewness correction
is implemented and tested. It aims at obtaining an iterative method that preserves second order of accuracy for the local
approximation of the variables and their gradients on the mesh. In order to test the effect of this skewness correction,
a stationary diffusion problem is addressed and the results compared to that obtained by the the OpenFOAM 2.1.1 and
Fluent 13.0 CFD softwares.
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(a) (b)
Figure 1: Examples of (a) structured and (b) unstructured meshes.

2. Structured and Unstructured Meshes

2.1 Structured Meshes

According to Maliska (1995), one mesh is called structured when (i) any of its internal elements have the same number
of neighbours and (ii) the mesh is obtained from a coordinate system and, therefore, the elements have a natural sequence.
In other words, the mesh has a connectivity that can be expressed as a two or three dimensional array. This mesh structure
has several advantages, among which stand out: (i) the resulting matrix of the finite volume discretization has fixed
bandwidth, (ii) the mesh ordering allows easy indexation of the variables and (iii) the excellent quality metrics, when
properly constructed.

A fixed bandwidth is very important because the iterative linear solvers are more effective on this type of matrix
(Maliska, 1995). Aditionally, the explicit connectivity facilitates the variable indexation and, consequently, the increase in
the discretization order, which is important when high accuracy is desired as, for example, in aero/acoustics simulations;
as a matter of fact, due the the large disparities between aerodynamic and acoustics length scales, high order spatial
discretization is necessary to preserve accuracy (Cunha and Redonnet, 2012). Finally, the quality metrics of the structured
meshes are usually better than those of the unstructured ones.

In general, in structured meshes, the elements are better aligned and less deformed, which minimizes errors associated
with (i) the non-orthogonality between the center-to-center and face normal vectors and (ii) the distance between the point
where the center-to-center line crosses the face belonging to the two neighbours volumes and the face center point. The
metric associated to the latter is defined as element skewness (Jasak, 1996).

As previously stated, the main drawback of structured meshes is their low versatility when it comes to fit complex
geometries. In other words, it is difficult to build high-quality structured meshes for complex geometries, which are more
a rule than an exception for real-life engineering problems. However, it should be highlighted that the investment in the
construction of the high quality structured meshes (even for complex geometries) should be preferred whenever possible,
because it usually pays of by diminishing the computational cost and increasing of the simulation accuracy.

2.2 Unstructured Meshes

Differently from structured meshes, the unstructured ones are characterized by the fact that: (i) the number of neigh-
bours depends of the element geometric type, (ii) the connectivity is irregular and, therefore, the variable indexation can
not be readily expressed as a two or three dimensional array in the computer memory and (iii) in general, the quality
metrics are inferior to those obtained for structured properly constructed ones.

As a result of the first characteristic cited above, the matrix resulting from the finite volume discretization shows
variable bandwidth. For this type of matrix, the iterative linear solvers are less effective or, in other words, require more
iterations to achieve convergence. However, this problem can be minimized by the use of appropriate techniques for
reducing a sparse matrix bandwidth, such as the reversed Cuthil-McKee algorithm (Cuthill and McKee, 1969).

Figure 1 shows examples of bi-dimensional structured and unstructured meshes. As can be seen for the structured
mesh shown in Fig. 1(a), the bandwidth of all internal elements is 30. From the unstructured one, shown in Fig. 1(b), it
can observe that, for example, the element 11 is connected to elements 6, 10 and 12, resulting in a bandwidth equal to 6 in
the line 11 of the matrix. On the other hand, the element 10 is connected to elements 3, 9 and 11, resulting in a bandwidth
equal to 8 in the line 10.

Regarding the characteristic (ii) aforementioned, the main consequence relies on the fact that the spatial discretization
order is linked to the connectivity of the elements. As a matter of fact, only in very special cases is possible to obtain a
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Figure 2: Polyhedral cell representing a control volume of FVM.

spatial discretization order greater than the one imposed by the maximum stencil size (which is limited by connectivity
restrictions).

Finally, the quality metrics of the unstructured meshes is, in general, worse than those obtained for structured ones. As
mentioned in Section 1., bad values of these metrics tend to introduce errors in the numerical solution and, consequently,
degrade the spatial discretization order of accuracy. In order to overcome this problem, correction techniques are nec-
essary. Once again, it is noteworthy that this type of mesh is very flexible to geometrical topologies, making easier the
automatic mesh construction for complex geometries.

3. Non-orthogonality correction

Among the metrics used for calculating mesh quality is the angle between the face normal vector, sf , and the element
center-to-center vector, PN , where P and N represent two neighbour cell centers, as shown in Fig. 2). This is the
so-called mesh non-orthogonality, which cannot be neglected and, if not properly handled, can lead to loss in solution
accuracy (Leonard, 1979).

The non-orthogonality correction is one of the ways to treat the problem and is applied to calculate the projection
of the gradient over the normal face area vector through a given face f , usually associated with the diffusive term of a
transport equation. The procedure proposed by Ferziger and Perić (1997) consisted in a deferred correction approach,
in which the projection of the gradient vector (or tensor, depending on the vector or tensor nature) onto the face normal
vector is split into an orthogonal contribution, which is implicitly treated, and a non-orthogonal contribution, which is
treated explicitly (Jasak, 1996). Jasak (1996) proposed a modified form of this procedure, which is implemented in the
OpenFOAM software (Weller et al., 1998), which was the base of the non-orthogonality correction implemented in the
present work. Before describing the non-orthogonal correction, the gradient evaluation in a generalized polyhedral mesh
using the finite volume method is described in the following.

3.1 Gradient operator discretization

In the finite volume method, the gradient evaluation at the centroid P of a discretized control volume can be calculated
in different ways. Two of them are: (i) the Gauss integration and (ii) the Least Square Method (C.R. Rao and Scheid,
1999). In the OpenFOAM and Fluent softwares, these methods as well as its face and cell limited versions are available.
More particularly, the Gauss integration is based on the Gauss theorem, given by:∫

VP

∇φdV =

∮
∂VP

(nφ)dS (1)

where φ is the scalar solution variable, VP is a volume of a fluid region around the the point P , ∂VP is the control surface
and n is the normal surface vector. Figure 2 illustrates the polyhedral cell that shall be considered in the present work.

Applying the mean value theorem (second order accurate) to Eq. 1, the discretized gradient at the centroid point P is
given by:

(∇φ)P ∼=

∑
f

sfnfφf

VP
(2)

The variable value φf at each face must be obtained by interpolation from the centroid values of the adjacent volumes.
Assuming that the line PN connecting two adjacent centroids crosses the face at its centroid, f , the linear interpolation,
given by Eq. 3 preserves second order of accuracy.

φf = fxφP + (1− fx)φN (3)
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with:

fx =
fN

PN
(4)

where fN is the distance between face centroid, f , and the centroid of element N and PN is the distance between the
centroids of the P and N elements (or cells). It should be noted that Eq. 3 ignores the term associated with the mesh
skewness.

The Least Square Method is given by Eq. 5.

(∇φ)P =
∑
N

w2
NG−1d(φN − φP ) (5)

where N extends to all neighbours of the cell P , d is the vector from centroid P to the centroid N and the weights wN

and the matrix G are given by:

wN =
1

‖d‖
(6)

G =
∑
N

w2
NdN ⊗ dN (7)

As can be seen, the two methods presented allow the calculation of the gradient at the control volume centroids. Such
a calculation depends on the values of the solution variables at the neighbour centroid control volumes. It is also worth
pointing out that the equations above do not impose any constraints on the element geometrical type. In other words, the
finite volume discretization has polyhedral mesh support.

3.2 Diffusion operator discretization and the non-orthogonality correction

Analogously to the gradient operator discretization, the Gauss theorem can be used to evaluate the diffusion operator,
according to Eq. 8.∫

VP

∇ · [γ∇φ]dV =

∮
∂VP

γ(n · ∇φ)dS (8)

where γ is the diffusion coefficient that, for anisotropic materials, can be a second order tensor.
Again, applying the mean value theorem, we get:∮
∂VP

γ(n · ∇φ)dS ∼=
∑
f

γf (∇φ)f · sf (9)

where sf = nfsf being sf the face area and n̂f is the normal unity vector evaluated at the face centroid.
As can be seen, Eq. 9 requires the normal gradient evaluation at different face centroids. The gradient at a given face

could be obtained from interpolation of its values at adjacent volume centroids. However, for an implicit implementation
of Eq. 9, a larger computational molecule would be needed (Ferziger and Perić, 1997). For example, a bi-dimensional
mesh formed by quadrilaterals elements would involve 13 elements for a second order accurate discretization of the
diffusion operator.

For computational efficiency, one tends to use only the elements adjacent to the face to approximate the derivative of
φ in the normal direction using the gradient projected in the d direction, according to Eq. 10.

sf · (∇φ)f = |sf |
φN − φP
|d|

(10)

If the d and the sf vectors are aligned, Eq. 10 is second order accurate, because d̂ · ∇φ = ŝf · ∇φ. However, for non-
aligned elements (or cells), in order to preserve second order accuracy a correction is necessary. The deferred correction
approach is suggest by Ferziger and Perić (1997) and followed by Jasak (1996). In this procedure, the projection of the
face gradient onto the face normal vector is separated in a projection onto the orthogonal contribution vector, ∆, and the
non-orthogonal correction one, which is its projection onto the k vector, as showed in Fig. 3, where sf = ∆ + k.

Jasak (1996) suggest three approaches to calculate the orthogonal vector. In the present work, we use the over-relaxed
one, given by Eq. 11.

∆ =
d

d · sf
|sf |2 (11)
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Figure 3: Nonorthogonality between center-to-center and face normal vector. Treatment in the over-relaxed approach.
Figure extracted form Jasak (1996).

Therefore, the deferred correction approach is given by Eq. 12.

(∇φ)f · sf ∼= (∇φ)f ·∆ + [(∇φ)f · k]expl (12)

where the superscript expl refers to an explicit evaluation of the non-orthogonal term using the current value of the
gradient at the centroid of the face, which is obtained by interpolation from the gradient values at the centroids of the
adjacent volumes of the face. Again, assuming that the line connecting two adjacent centroids, P and N , crosses the face
also at its centroid, the linear interpolation, as showed in Eq. 13, ensures second-order order of accuracy. The gradient
value at the element centroids can be calculated using Eq. 2 or 5.

(∇φ)f = fx(∇φ)P + (1− fx)(∇φ)N (13)

The orthogonal contribution of the gradient is calculated using the value of the variable at the centroid of the adjacent
volumes, as in Eq. 14.

∆ · (∇φ)f = |∆|φN − φP
|d|

(14)

Therefore, the non-orthogonality correction requires an iterative procedure, which is internal to the solution procedure
of the transport equations. Given that one has to ensure that k = sf−∆, if the procedure is convergent, the correction will
preserve 2nd order of accuracy. However, when the non-orthogonal term is larger than the orthogonal one, the iterative
correction can become unbounded and then needs to be limited, which is made according to Eq. 15.

∆ · (∇φ)f > λ[kf · (∇φ)f ] (15)

where λ is the limiter. The limitation can ensure convergence, but degrades the second-order accuracy of the discretization.
Typical values used for λ are 0.5 and 0.333.

3.3 Skewness correction

Equations 3 and 13, which interpolate the variable and its gradient to the faces centroids, are second order accurate
only when the vector m (so-called skewness vector), showed in Fig. 4, is null. As can be seen, the skewness vector is the
vector defined by two points: (i) the point where the vector d crosses the respective face and (ii) the centroid face, f .

Therefore, the non-orthogonality correction procedure described in the previous section, when not artificially bounded,
also preserves second order of accuracy only when the vector m is null. When it is not the case, the equations cited above
must be corrected. In order to do so, we consider the second order Taylor series expansion around the centroid of the
element P to approximate the solution variable at the face centroid, given by Eq. 16.

φf = φP + (∇φ)P · dPf = φP + (∇φ)f · dPf (16)

Figure 4: Skewness vector connecting the crossing point and the face centroid point.
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From Fig. 4, we can be seen that:

dPf = dPm + m = (d− dmN ) + m (17)

where dPm is the vector from point P to point m, dmN is the vector from point m to point N and d is the vector from
point P to point N . Therefore:

φf = φP + (∇φ)f · d− (∇φ)f · dmN + (∇φ)f ·m (18)

The second and third terms at the right hand side of the Eq. 18 are given, respectively, by Eqs. 19 and 20.

(∇φ)f · d = φN − φP (19)

(∇φ)f · dmN =
φN − φP
|d|

|dmN | (20)

Inserting Eqs. 19 and 20 in Eq. 18, we have:

φf = fxφP + (1− fx)φN + m · (∇φ)f (21)

with, in this case:

fx =
|dmN |
|d|

(22)

Finally, the gradient interpolation at the face centroid is given by:

∇φf = fx∇φP + (1− fx)∇φN +∇[m · (∇φ)f ] (23)

Therefore, in order to preserve second order of accuracy by taking the skewness error into account, the variable and
its gradient at the face must be approximated by Eqs. 21 and 23. If these equations are used for this propose, the non-
orthogonality correction equation given by Eq. 14 will be also second order accurate, in the absence of artificial limitation
correction.

In the present work, we implement a finite volume discretization considering the skewness correction given only by
Eq. 21. The correction given by the Eq. 23 is the subject of future work. Therefore, the skewness correction implemented
here is still partial. It is noteworthy that, analogously to the non-orthogonality correction, the skewness correction is
explicitly included in the Eq. 21 and in the same loop of that iterative procedure. In other words, the implemented
skewness correction corresponds to replacement of the Eq. 3 by Eq. 21 in the non-orthogonality correction procedure
described in the section 3.2.

4. Results

Two test problems were used in the comparison among the results of three different codes: the OpenFOAM, ANSYS
Fluent and an in-house code with the proposed correction method implemented. For both test cases, a steady-state dif-
fusion problem with constant diffusion coefficient is addressed or, more specifically, the Laplace equation was solved.
Equation 24 shows the model to be used for the evaluations. The focus on a pure diffusive problem was given because, in
general, the non-orthogonality effects are more important for this kind of problem.

∇ · [∇[φ]] = 0 (24)

The finite volume discretized equations, including the nonorthogonality correction, is given by Eq. 25.∑
f

[(∇φ)f ·∆]k = −bk−1
P (25)

where:

bk−1
P =

∑
f

[(∇φ)f · (sf −∆)]k−1 (26)

and k indicates the current iteration.
First and second type boundary conditions are used for this problem. Their implementation is made according to Jasak

(1996), where it is assumed that the specified value for the boundary condition is valid along the entire boundary face and,
therefore, for a constant specified value, the non-orthogonality correction is not applied in the boundary faces.
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Figure 5: Control volume with a boundary face. Extracted form Jasak (1996). In this figure, the vector sb is represented
by the vector S and the vector d is the vector form cell centroid P to face centroid b.

The vector dn, shown in Fig. 5, which links the cell center to the boundary face, is normal to the boundary and it is
given by:

dn =
d · sb
|sb|

sb
|sb|

(27)

where, in this case, d is the vector from cell centroid P to face centroid b, and sb is the boundary face area vector,
represented in the Fig. 5 by the vector S.

Equations 28 e 29 illustrate the implementation of the boundary conditions of first and second types.

• First type BC (fixed-value BC):

sb · (∇φ)b = |sf |
φb − φP
|dn|

(28)

• Second type BC (fixed-gradient BC):

sb · (∇φ)b = gb (29)

where φb and gb are the specified boundary value for the solution variable and its gradient, respectively.

4.1 Test problem 1: Benchmark Problem

In order to validate the implemented in-house code, we first consider a non-orthogonal mesh, as showed in Fig. 6. The
coordinates of the geometric model are defined for x ∈ [0, 2] and y ∈ [0, 1]. For this mesh the angle between the face
area vector and the center-to-center vector is 45o for the left and right faces and it is zero for the top and bottom ones.
The skewness vector, as defined in the present work, is null for all faces of this mesh. For LEFT and BOTTOM boundary
faces, a second type boundary condition with gb = 0 was used, whereas for the TOP and RIGHT boundary faces a first
type one was preferred, with φb = 1 at the RIGHT boundary and φb = 0.1 on the TOP one.

Figure 7 shows the results of the simulation with OpenFOAM 2.1.1, our in-house code, from now called Own Code,
and Fluent 13.0. For OpenFOAM and Own Code two iterations of the non-orthogonality corrections were used. It was
not possible to configure numerical schemes for diffusion term in Fluent 13.0 directly; Nevertheless, the results suggest
that this software uses some kind non-orthogonality correction procedure.

Figure 6: Mesh used for test problem 1.

ISSN 2176-5480

3525



Antonio de O. S. Moraes, Paulo L. C. Lage, Guilherme C. Cunha and Luiz Fernando L. R. Silva
Analysis of the Non-Orthogonality Correction of Finite Volume Discretization on Unstructured Meshes

(a) (b) (c)

Figure 7: Contour plot of φ obtained by (a) OpenFOAM 2.1.1, (b) Own Code and (c) Fluent 13.0.
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Figure 8: Profiles along the straight line that joint the points (0.5, 0, 0.05) and (1.5, 1, 0.05) using non-orthogonality
correction approach. (a) φ, (b) x-component of∇φ.

Figure 8 shown the profile of the solution variable (φ) and the x-component of its gradient along the straight line that
joint the points (0.5, 0, 0.05) and (1.5, 1, 0.05) obtained with Own Code, OpenFOAM 2.1.1 and Fluent 13.0. Again, the
results with Own Code and OpenFOAM 2.1.1 were obtained using two iterations in the correction loop. Figures 7 and
8 show a very good agreement between the results obtained with the three solvers and, therefore, the Own Code can be
considered to be validated.

Since the Own Code is validated, its results depicted in Fig. 9 can be used to illustrate the effect of the non-orthogonal
correction on the solution. As can be seen, the contour plot of the solution variable is greatly influenced by the correction.
Figure 10 shows the profiles of the solution variable and the x-component of its gradient along the line described above.
The effect of the non-orthogonal correction is even more pronounced for the gradient values.

4.2 Test Problem 2: Analysis of skewness correction

The present test case addresses the validation of the skewness correction method proposed in the present work. For
doing so, substituted Eq. 3 by Eq. 21 in the evaluation of the gradient at the cell centers which are used in the non-
orthogonality procedure, being the cell centers gradients evaluated by Gauss integration (cf. section 3.1). Such a feature
is implemented in our Own Code in order to compare its results to those obtained with OpenFOAM 2.1.1 and ANSYS
Fluent 13.0. The coordinates of the geometric model are defined for x ∈ [0, 6.1] and y ∈ [0, 4], being the origin of ARC1
and ARC2, respectively, the points (0, 0, 0) and (6.1, 0, 0) . Equation 24 was solved on two meshes: a coarse unstructured
mesh with large skewness and bad element size transitions and a fine structured mesh exclusively formed by quadrilateral

(a) (b)
Figure 9: Effects of the non-orthogonal correction on the solution variable (φ). (a) Uncorrected, (b) Corrected.
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Figure 10: Effects of the non-orthogonal correction on the profiles along the straight line that joint the points (0.5, 0, 0.05)
and (1.5, 1, 0.05) of the (a) Solution variable and (b) the x-component its gradient.

(a) (b)

Figure 11: Computational meshes used for test problem 2: (a) the coarse unstructured mixed mesh with triangular and
quadrilaterals elements and (b) The structured quadrilateral meshes.

elements. Figure 11 shows the meshes. For the L1, L2 and BOTTOM boundary faces a second type boundary condition
with gb = 0 was used and, for the ARC1, ARC2 and TOP boundary faces, first type one was applied with φb = 0.1,
φb = 1 and φb = 10, respectively.

The mixed mesh is composed with 1117 quadrilaterals and 2114 triangles, whereas the structured mesh has 9000
quadrilaterals, both constructed using the Salome Platform (Salome, 2013). Figure 12 shows the Equiangular Skewness
of the two meshes. It has to be noted that the definition of Equiangular Skew is different from the skewness definition
used in the present work. Nevertheless, their values are strongly related. According to the Tgrid R©manual (FLUENT Inc.,
2006), the Normalized Equiangular Skewness is defined by Eq. 30:

Skew = max
[Qmax −Qe

180−Qe
,
Qe −Qmin

Qe

]
(30)

where Qmax is the largest angle on the face or cell, Qmin is the smallest one and Qe is the angle of equiangular face or
cell (60o for a triangle and 90o for a square).

Figure 13 compares the contour plot of the solution variable obtained on unstructured mixed mesh using our Own

(a) (b)
Figure 12: Equiangular Skewness: (a) unstructured (b) structured.
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(a) (b) (c)
Figure 13: Contour plot of the solution variable on the unstructured mixed mesh: (a) Own Code, (b) OpenFOAM 2.1.1
and (c) Ansys Fluent 13.0 solutions.
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Figure 14: Solution variable profile along the straight vertical line that joint the points (3.05, 0, 0.05)× (3.05, 4, 0.05).

Code, OpenFOAM 2.1.1 and Ansys Fluent 13.0. Again, all φ fields are in good agreement. Figure 14 shows the graphics
of the solution variable along the straight vertical line that joint the points (3.05, 0, 0.05)× (3.05, 4, 0.05), confirming the
validity of our implementation.

Figures 15 and 16 depict the contour plot of the x-component and y-component of the gradient, respectively, for the
simulations carried out using our Own Code on the unstructured, taking account the skewness in the non-orthogonality
correction, and using OpenFOAM 2.1.1 on the structured and unstructured meshes with its procedure of non-orthogonality
correction. The effect of the skewness correction is quite relevant and can be easily observed. Figure 17 shows the profiles
of the x and y-component of the gradient along the straight vertical line described above, obtained in these simulations.
Again, the effect of the skewness correction is apparent.

Figures 18 and 19 show, respectively, the x and y components of ∇φ obtained by our Own Code with skewness cor-
rection taken account in the non-orthogonality correction procedure and by OpenFOAM 2.1.1 with its non-orthogonality
correction procedure, both using the structured mesh. The skewness correction improves the result on the regions of
higher skewness of this refined mesh.

(a) (b) (c)

Figure 15: Contour plot of the x-component of the solution variable gradient on the unstructured mesh: (a) Own Code,
(b) OpenFOAM 2.1.1. (c) Benchmark result on the structured mesh obtained with OpenFOAM 2.1.1.
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(a) (b) (c)

Figure 16: Contour plot of the y-component of the solution variable gradient on the unstructured mesh: (a) Own Code,
(b) OpenFOAM 2.1.1. (c) Benchmark result on the structured mesh obtained with OpenFOAM 2.1.1.
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Figure 17: Profiles of the solution variable gradient along the straight vertical line that joint the points (3.05, 0, 0.05) and
(3.05, 4, 0.05) . (a) x-component and (b) y-component.

For all the simulated cases, the solution variable φ was not sensible to the skewness correction. Both OpenFOAM
and our Own Code provided almost the same results, as can be seen in Fig. 14. This was expected because, it can be
demonstrated that the contribution of the skew correction to the solution of diffusive problems is of the order of magnitude
∇[(∇φ)f ·m] · k, which is small for relatively smooth φ solutions on meshes of average quality.

5. Conclusion

In the present work, we implemented an in-house finite volume code with a non-orthogonality correction approach that
take int account the mesh skewness. This code was used to analyses the effects of the mesh skewness on the numerical
solution of a purely diffusive model. This code was validated against OpenFOAM 2.1.1 and ANSYS Fluent 13.0 by
solving of a diffusive problem on a non-orthogonal but skewness free structured mesh.

(a) (b)
Figure 18: Contour plot of the x-component of the gradient on the structured mesh, obtained using (a) our Own Code and
(b) OpenFOAM 2.1.1. Only gradient values in the [0,3.5] range were plotted.
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(a) (b)
Figure 19: Contour plot of the x-component of the gradient on the structured mesh, obtained using (a) our Own Code and
(b) OpenFOAM 2.1.1. Only gradient values in the [-4,0] range were plotted

For meshes with high values of skewness, the Eqs. 21 and 23 showed that, in order not to deteriorate the second order
accuracy of the numerical method, the skewness correction has to be taken into account in the interpolation of the solution
variable and its gradients to the faces. The numerical results obtained in a second test problem showed that the skewness
correction can have a non-negligible effect. More precisely, when the results obtained for an unstructured mesh with high
skewness values were compared with those obtained for a fine structured mesh, the accuracy of the gradient values at the
centers of the control volumes was significantly increased when the proposed skewness correction was taken into account.
We observed, however, that the implemented code does not yet take into account the skewness correction in the gradient
interpolation to the faces.
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