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Abstract. The Discrete Element Method is a method for simulation of a particle system. For the “soft-sphere” mechanism
of particle interactions, there are several models for normal contact forces, namely Linear Spring-Dashpot, nonlinear
damped Hertzian Spring-Dashpot, among others. In the present work, we compare linear and non-linear normal contact
forces models for soft materials in multibody dynamics. Using the MFIX code, the models are applied in the numerical
simulations of a single freely falling particle. Non-dimensional expressions, tables and graphics for linear and nonlinear
models are also presented.
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1. INTRODUCTION

Discrete Element Method (DEM) is a method based on molecular dynamics for discrete particle system. This method
has been applied in several areas, e.g., in geotechnical mechanics by Cundall and Strack (1979), fluidized beds by Tsuji
et al. (1993), segregation of granular materials by Ketterhagen et al. (2007), cohesive particles flows by Weber (2004),
solids mixing in gas-fluidized beds by Rhodes et al. (2001), among other studies. A comprehensive literature review is
found in the works published by Zhu et al. (2007), Zhu et al. (2008), which summarize the studies based on discrete
particle simulation. In this method, the contact forces can be modeled either as “hard–sphere” or as “soft–sphere” (Crowe
et al., 1997). The contact forces are included in the Newton’s Second Law of motion to determine the dynamic of the
particles. In a hard-sphere model, the trajectories of particles are determined by momentum conserving binary collisions.
In soft–sphere models, the particles are allowed to overlap slightly and the contact forces are subsequently calculated
from the deformation history of the contact using a contact-force scheme. The soft–sphere method for granular dynam-
ics simulations was developed by Cundall and Strack (1979). In the soft–sphere approach there is a mapping between
the contact forces during the impact and dynamic systems. A detailed study for the impact theory is found in the book
by Goldsmith (1960). The elastic mechanism in the impact modeling is first given by Hertz (1882). Timoshenko and
Goodier (1970) give a classical presentation of theory of elasticity. The energy lost during impact can be associated with
damping mechanisms during the contact period. Simo and Hughes (1997) present the theoretical foundations of inelastic-
ity, its numerical formulation, and a description of computational algorithms for classical plasticity, viscoplasticity, and
viscoelasticity material models.

The focus of this paper is to compare linear and nonlinear normal contact forces models for soft materials in multibody
dynamics. The open source code MFIX (“Multiphase Flow with Interphase eXchanges”, Syamlal et al. (1993)) developed
at NETL (“National Energy Technology Laboratory”) is used for numerical simulations. Using this code, the presented
models are applied in the simulation of a single freely falling particle. Non-dimensional expressions, tables and graphics
for linear and nonlinear models are also presented.

2. MATHEMATICAL MODEL

In the DEM approach, the motion of an individual particle i, with mass m(i) is described by Newton’s laws as:

m(i) d
2X(i)

dt2
= F(i)(t) = m(i)g + F(i)

c (t) (1)

where X(i) is the position of the mass center of the particle, m(i)g is the gravitational force, F(i)
c are the contact forces

due the collision between particles, and F(i) is the sum of all external forces acting on particle i. The torque of the external
forces acting on the particles is calculated by:

T(i)(t) = I(i)
dw(i)(t)

dt
(2)

where I(i) is the particle mass moment of inertia given by: I(i) = 2
5m

(i)r(i)
2

, and r(i) is the radius of particle.
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The contact forces can be calculated according to the soft-sphere model proposed by Cundall and Strack (1979). This
model is based on the linear spring–dashpot model which enables the analysis of some interactions between particles and
between particles and wall. The soft-sphere model uses a time-step allowing that the particles remain in contact for a
while. In this system, multi–particle contacts are possible. The contact forces are subsequently calculated from the level
of deformation of the particles.

In the soft-sphere model, the contact forces are calculated from the overlap (“deformation”), δ, between the particles
and from its relative velocity. For two particles i and j with diameters D(i) and D(j), respectively, δn is given by:

δn = 0.5
(
D(i) +D(j)

)
−
∣∣∣X(i) −X(j)

∣∣∣ (3)

where X(i) and X(j) are the positions of the mass center of the particles i and j, respectively. For these particles with
linear and angular velocities equal V(i) and w(i), and V(j) and w(j), respectively, the relative velocity of the point of
contact is:

Vij = V(j) −V(i) + w(j) ×R(j) −w(i) ×R(i) (4)

where R(i) and R(j) are vectors from the mass center of the particles i and j, respectively, to the contact point (see Fig.
1).

Figure 1. Schematic of two particles in contact (soft-sphere model).

The normal Vn,ij and the tangential components Vt,ij of relative contact velocity are given by:

Vn,ij = (Vij .nij)nij (5)

Vt,ij = Vij −Vn,ij (6)

nij = (X(j) −X(i))/|X(j) −X(i)| is the normal unit vector along the contact line pointing from particle i to particle j.
In the soft-sphere model, the overlap (δ) between two particles is represented by a spring-dashpot system.

The contact force (F(i)
c ) acting on a particle i, at time t, is calculated as the sum of the contact force of all particles j

that are in contact with the particle i:

F(i)
c (t) =

N∑
j=1 j 6=i

(Fn,ij(t) + Ft,ij(t)) (7)

where Fn,ij and Ft,ij are the normal and tangential components of the contact force between the particles i and j.
The total torque acting on the particle i is calculated by:

T(i)(t) =
N∑

j=1 j 6=i

(
R(i) × Ft,ij(t)

)
(8)

ISSN 2176-5480

160



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

From the Eq. (7), the normal and tangential components of the contact force, F(i)
c , are decomposed into spring

conservative force (FS) and dashpot dissipative force (FD):

Fn,ij(t) = FS
n,ij + FD

n,ij (9)

Ft,ij(t) = FS
t,ij + FD

t,ij (10)

2.1 Contact force: linear model

In the soft-sphere model, the overlap (δ) between two particles is represented by a linear spring-dashpot system. The
Hooke’s law (F (δn) = kδn) is used for describing the elastic force. The spring stiffness and the dashpot damping coeffi-
cients in the normal direction are kn and ηn, respectively, and the spring stiffness and the dashpot damping coefficients in
the tangential direction are kt and ηt, respectively.

The normal and tangential spring forces, (FS
n,ij) and (FS

t,ij), respectively, are calculated based on the overlap between
the collision of particles:

FS
n,ij = −knδnnij (11)

FS
t,ij = −ktδt (12)

where kn is normal stiffness spring coefficient, kt is tangential stiffness spring coefficient, δn is the normal overlap
between particles i and j and δt is the vector of the tangential displacement between particles i and j (see e.g. Garg et al.
(2012)).

For the case of Coulomb friction between the particles, if the condition bellow is satisfied during any contact time,

|Ft,ij | > µ |Fn,ij | (13)

then the sliding occurs and the tangential contact force is calculated as:

Ft,ij = −µ |Fn,ij | tij (14)

where µ is the friction coefficient and tij = Vt,ij/|Vt,ij | is the tangential unit vector.
The normal and tangential dashpot forces, (FD

n,ij) and (FD
t,ij), respectively, are calculated based on normal and tan-

gential components of relative contact velocity:

FD
n,ij = −ηnVn,ij (15)

FD
t,ij = −ηtVt,ij (16)

where ηn and ηt are normal and tangential damping coefficients, respectively.
The normal stiffness spring kn and the normal damping coefficient ηn for collision between particles i and j belong

the solid-phases m and l are calculated applying the Newton’s Second Law in the normal direction by the acting normal
contact forces Eq.(9). This LSD model, with initial conditions δn(0) = 0 and Vn,ij(0) = V0, has analytic solution for
the normal overlap that allows to determine the normal restitution coefficient, en and the collision duration, t = tc,n.
Therefore, considering δn = 0 at t = tc,n and Vn,ij(tc,n) = −enV0, the quantities en and tc,n are given by (see e.g.
Shäfer et al. (1996)):

en = exp

(
− ηn

2meff
tc,n

)
(17)

tc,n = π

(
kn
meff

− η2n
4m2

eff

)−1/2
(18)

where 1/meff = 1/mm + 1/ml is the effective mass. From Eq. (17) and Eq. (18), kn and ηn are expressed as:

kn =
meff

t2c,n
(ln2 en + π2) (19)

ηn = −2
√
meffkn

ln en√
ln2 en + π2

(20)

If the values of en and tc,n are known by experimental measures, the quantities kn and ηn can be determined by Eq.
(19) and Eq. (20), respectively. Usually, in numerical simulations, we only have the value for en, so we need a procedure
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for estimate the value for kn in the LSD model. Sun et al. (2007) state that the value of the spring constant should be large
enough to avoid particle interpenetration, yet not so large as to require an unreasonably small simulation time–step.

Following the work of Shäfer et al. (1996), the tangential spring stiffness coefficient can be assumed to be equal to
two-sevenths of the normal stiffness coefficient (i.e., kt = 2/7kn). The tangential damping coefficient can be taken to be
half of normal damping coefficient,i.e. ηt=0.5ηn (Silbert et al. (2001), Silbert et al. (2003)).

Now, we detail the motion of the particle in the normal direction. The equation of motion for the overlap in the normal
direction, δn, describing the collisions of two particles can be written as:

meff δ̈n = −knδn − ηnδ̇n (21)

or

δ̈n + 2Ψδ̇n + Ω2
0δn = 0 (22)

where Ω0 =
√
kn/meff is the frequency of the undamped harmonic oscillator and Ψ = ηn/(2meff ) is the damping

coefficient responsible for energy dissipation.
The solution for the differential equation of the damped harmonic oscillator, Eqs. 21,22, for the under-damped case

(Ω0 > Ψ), with initial conditions δn(0) = 0 and δ̇n(0) = v0 is

δn(t) = (v0/Ω) exp(−Ψt) sin(Ωt) (23)

δ̇n(t) = (v0/Ω) exp(−Ψt)(−Ψ sin(Ωt) + Ω cos(Ωt)) (24)

where v0 is the initial relative velocity and Ω =
√

Ω2
0 −Ψ2 is the frequency of the damped oscillator. The LSD model is

widely used due to the existence of simple analytic solution for the overlap and relationships between the parameters kn
and ηn. The duration of a contact can be determined from δn(tc,n) = 0 in Eq. 23 which gives tc,n = π/Ω (or Eq. 18),
so that the relative velocity just after contact equals δ̇n(tc,n) = −v0 exp(−Ψtc,n). The normal coefficient of restitution is
given by Eq. 17 or

en = − δ̇n(tc,n)

δ̇n(0)
= exp(−πΨ/Ω) (25)

The inverse relationship of 25 allows to compute the value for the parameter Ψ or ηn, see Eq. 20, if the experimental
value for en is known,

Ψ =
− ln en√

ln2 en + π2
Ω0 (26)

The linear model predicts that the normal coefficient of restitution en and contact duration tc,n are independent of
impact velocity v0 (see Eqs. 25 and 18). The maximum overlap can also be derived from δ̇n(tmax) = 0, Eqs. 23 and 24,
and it is expressed by

δmax = (v0/Ω0) exp(−arctan(β)

β
) (27)

where β = −Ω/Ψ = π/ ln en for en < 1.0. The contact duration can be re-written as

tc,n =
π

Ω0

√
(1 +

1

β2
) (28)

For the perfectly elastic collision (en = 1.0), Ψ = ηn = 0, and we have the following expressions for the maximum
overlap and the contact duration: δmax = v0/Ω0 and tc,n = π/Ω0.

Using the following dimensionless parameters in Eq.22:

δ∗n =
δn
v0

Ω0, δ∗′n =
δ̇n
v0
, t∗ = tΩ0

The equation of motion for the dimensionless overlap in the normal direction, δ∗n, can be written as:

δ∗′′n + 2ν∗δ∗′n + δ∗n = 0 (29)

where the primes denote derivatives with respect to t∗. The parameter ν∗ is the dimensionless damping coefficient given
by (0 < en ≤ 1)

ν∗ =
Ψ

Ω0
=

− ln en√
ln2 en + π2

(30)
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where 0 ≤ ν∗ < 1. The solution for the dimensionless overlap equation (Eq. 29) for the under-damped case (0 ≤ ν∗ < 1)
with initial conditions δ∗n(0) = 0 and δ∗′n (0) = 1 is given by

δ∗n(t∗) = (1/Ω∗) exp(−ν∗t∗) sin(Ω∗t∗) (31)

where Ω∗ =
√

1− ν∗2 is the dimensionless frequency of the damped oscillator.
The dimensionless maximum overlap and the dimensionless contact duration are given by:

δ∗max = exp(−arctan(β∗)

β∗
) (32)

t∗c,n = π

√
(1 +

1

β∗2
) (33)

where β∗ = −Ω∗/ν∗ = π/ ln en = β, for 0 < en < 1.0. For the perfectly elastic collision (en = 1.0), the dimensionless
damping coefficient is equal to zero (ν∗ = 0). In this case, the dimensionless maximum overlap and the dimensionless
contact duration are expressed by δ∗max = 1.0 and t∗c,n = π, respectively.

Fig. 2 illustrates curves for dimensionless overlap, δ∗, versus dimensionless time for viscous damping contact repre-
senting several values of the normal restitution coefficient (en = 0.9, 0.7, 0.5, 0.3, 0.1). Theses graphs are obtained until
the contact duration. In this figure the contact duration increases as en decreases (see Table 1). Larger contact duration is
desirable since larger simulation integration time steps may be used. We can also see that contact duration is independent
of impact velocity, opposite of real collisions (see Goldsmith (1960), Lun and Savage (1986)). The maximum overlap
also increases as en increases (see Table 1). The larger values for overlaps make the soft-model base on the geometrically
rigid particle assumption (limited to small deformations or overlaps) less accurate and can cause physical modeling errors
due to excluded volume effects.
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Figure 2. Dimensionless overlap (linear model).

Table 1 shows, for several values of the normal restitution coefficient (en = 1.0, 0.9, 0.7, 0.5, 0.3, 0.1), the following
dimensionless parameters: damping coefficient ν∗, time at maximum overlap t∗max, maximum overlap δ∗max, contact
duration t∗c,n, acceleration at initial time a∗(0), and acceleration at the end of contact a∗(t∗c,n), respectively.

2.2 Contact force: nonlinear model

The collisions between particle-particle and particle wall can also be described with Hertzian contact theory, Hertz
(1882), Goldsmith (1960). The collision of two elastic spheres is described by the integration of Hooke’s Law over the
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Table 1. Dimensionless parameters for the linear model.

en ν∗ t∗max δ∗max t∗c,n a∗(0) a∗(t∗c,n)

1 0 1.5708 1 3.1416 0 0
0.9 0.0335 1.5381 0.9498 3.1434 -0.0670 0.0603
0.7 0.1128 1.4671 0.8475 3.1618 -0.2256 0.1579
0.5 0.2155 1.3862 0.7418 3.2172 -0.4309 0.2155
0.3 0.3579 1.2903 0.6302 3.3644 -0.7157 0.2147
0.1 0.5912 1.1635 0.5027 3.8951 -1.1823 0.1182

deformation area that results in a nonlinear relationship known as Hertz’s Law (F (δn) = kn,Hzδ
3/2
n ) Hertz (1882), where

kn,Hz is described below. So, the normal and tangential spring forces, (FS
n,ij) and (FS

t,ij), are given by:

FS
n,ij = −kn,Hzδ

1
2
n δnnij (34)

FS
t,ij = −kt,Hzδ

1
2
n δt (35)

Hunt and Grossley (1975) derived a expression for the damping term λδn(t)pδ̇n(t)q . Here, we assume q = 1, but as
discussed by Hunt and Grossley (1975) other choices are suitable for the index q. Considering p = 1/4, an expression for
dissipative force proposed by Tsuji et al. (1992) represents the normal and tangential dashpot forces, (FD

n,ij) and (FD
t,ij),

that are described by:

FD
n,ij = −ηn,Hzδn

1/4Vn,ij (36)

FD
t,ij = −ηt,Hzδn

1/4Vt,ij (37)

the nonlinear normal and tangential spring stiffnesses between contacting particle i and j, kn,Hz , kt,Hz , are calculated as:

kn,Hz =
4

3
Eeff

√
reff (38)

kt,Hz =
16

3
Geff

√
reff (39)

and the nonlinear normal and tangential damping coefficients, ηn,Hz , ηt,Hz are related to the nonlinear spring stiffness
and restitution coefficient as:

ηn,Hz = −
√

5
√
meffkn,Hz

ln en√
ln2 en + π2

(40)

ηn,Hz = −
√

5
√
meffkt,Hz

ln et√
ln2 et + π2

(41)

where Eeff and Geff are the effective Young’s modulus and effective shear modulus expressed by 1/Eeff = (1 −
σ2
m)/Em + (1 − σ2

l )/El and 1/Geff = (2 − σm)/Gm + (2 − σl)/Gl, respectively, and Em and El are the Young’s
moduli, and σm and σl are the Poisson ratios for mth and lth solid-phases, respectively. Gm and Gl are the shear moduli
for mth and lth solid-phases calculated as Gm = Em/2(1 + σm), Gl = El/2(1 + σl), and reff is the effective radius
expressed by 1/reff = 1/rm + 1/rl, where rm and rl are the radii of the particles.

The equation of motion for the normal overlap is expressed by the nonlinear damped Hertzian oscillator equation:

meff δ̈n = −kn,Hzδ
3/2
n − ηn,Aδn1/4δ̇n (42)

Using the following dimensionless parameters in Eq.42:

δ∗n = δn(
kn,Hz

v20meff
)2/5, δ∗′n =

δ̇n
v0
, t∗ = t(

kn,Hzv
1/2
0

meff
)2/5

where v0 is the impact velocity. The equation of motion for the dimensionless overlap in the normal direction, δ∗n, can be
written as:

δ∗′′n + 2ν∗Aδ
∗1/4
n δ∗′n + δ∗3/2n = 0 (43)
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where the primes denote derivatives with respect to t∗. The parameter ν∗A is the dimensionless damping coefficient given
by

ν∗A =
ηn,Hz

2
√

(meffkn,Hz)
(44)

The equation 43 can be solved numerically with initial conditions δ∗n(0) = 0 and δ∗′n (0) = 1 for determining a set of
dimensionless overlaps δ∗n,i for instants t∗i .

Fig. 3 shows graphs for the nonlinear model for dimensionless overlap versus dimensionless time for several values
of the Hertzian dimensionless damping coefficient (ν∗A = 0, 0.1, 0.25, 0.4, 0.6). As before, theses graphs are plotted until
the contact duration t∗c,n. In Fig. 3 the contact duration increases as ν∗A increases. We can also see that contact duration is
independent of impact velocity and that the maximum overlap also increases as ν∗A decreases.
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Figure 3. Dimensionless overlap (nonlinear model).

Table 2 shows, for several values of the damping coefficient, (ν∗A), the following dimensionless parameters: normal
restitution coefficient en, time at maximum overlap t∗max, maximum overlap δ∗max, contact duration t∗c,n, acceleration at
initial time a∗(0), and acceleration at end of contact a∗(t∗c,n), respectively. These parameters can be computed based
on dimensionless overlap time solution. The normal coefficient of restitution is computed by en = −δ∗′n (t∗c,n) and
acceleration by a∗ = v∗′.

Table 2. Dimensionless parameters for the nonlinear model.

ν∗A en t∗max δ∗max t∗c,n a∗(0) a∗(t∗c,n)

0 1.0000 1.6090 1.0936 3.2181 0 0
0.02 0.9453 1.5976 1.0693 3.2366 -0.0018 0.0034
0.04 0.8936 1.5864 1.0465 3.2562 -0.0036 0.0050
0.1 0.7542 1.5542 0.9830 3.3213 -0.0089 0.0089
0.4 0.3001 1.4181 0.7557 3.8449 -0.0358 0.0096
0.6 0.1356 1.3449 0.6559 4.5368 -0.0536 0.0057

3. RESULTS

In this section we describe numerical simulation of a single freely falling particle. We compute the contact forces using
two models: linear and nonlinear. In the analyzed problem, a single smooth frictionless spherical particle is dropped from
a specified height. The particle freely falls under gravity and bounces upon collision with a fixed wall. Figure 4 shows a
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model of a ball falling on a stationary surface. This classical bouncing ball problem has been applied by several authors
(e.g. Chen et al. (2007), Flores et al. (2011), Garg et al. (2012), Jankowski (2005), Ye et al. (2009)). Following the work
of Garg et al. (2012) and Chen et al. (2007), we have studied a single 0.2 m particle diameter falling and bouncing in a
wall.

Figure 4. Schematic for the free fall of a single particle.

3.1 Linear model

In this section we use the linear model for determination of the contact forces. The particle parameters are taken from
Chen et al. (2007) and reproduced in Table 3. The impact velocity of the particle with the wall is v0 = −

√
2g(h0 − rp) =

−2.801 m/s, where rp is the particle radius.

Table 3. Simulation parameters for single freely falling particle: linear case.

Fall height 0.5 m
Particle diameter 0.2 m
Particle density 2600 kg/m3

Normal particle–wall restitution coefficients 0.9 and 0.7
Particle–wall normal spring stiffness coefficients kn = 7.94× 104 N/m and kn = 7.77× 104 N/m
Particle–wall tangential spring stiffness coefficient kt = kn
Particle–wall tangential damping coefficient ηt = ηn
Acceleration of gravity 9.81 m/s2

Now we illustrate the position and velocity time-history. The MFIX–DEM code has been used in the simulations. A
similar test for free falling particle was verified in the work developed by Garg et al. (2012). First we simulate a single
freely falling particle with a normal restitution coefficient equal to 0.9. The normal spring stiffness coefficient used is
kn = 7.94× 104 N/m (Navarro and Souza-Braun (2013)). Figure 5 shows the particle center position y and the particle
velocity v versus time (from t = 0 s to t = 1.6 s). The contact is modeled with linear model and the particle rebounds after
each impact with the wall. We can see the energy lost due to dissipative contact force. The duration of contact occurs for
values of the particle center position y < 0.1 m, where the repulsive force acts. During the total simulation time t = 1.6 s,
the particle collided with the wall three times.

Now, we describe simulations using the normal restitution coefficient equal to 0.7. The normal spring stiffness coef-
ficient used is kn = 7.77× 104 N/m (Navarro and Souza-Braun (2013)). Figure 6 shows the results of the particle kine-
matics (center position y and the particle velocity v versus time), when the normal coefficient of restitution is en = 0.7.
Similarly to the case analyzed before, when the particle hits the wall, a contact occurs and the particle is rebounded. As
the coefficient of restitution is smaller than a unit, the particle jumps less high after each contact. The contact duration in
each particle bounce is smaller and decreases until zero when the particle remains on the ground. In Fig. 6, we can see
seven collisions of the particle with the wall.
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Figure 5. Particle kinematics (kn = 7.94× 104 N/m and en = 0.9, linear model): particle center position y (solid line);
particle velocity (dashed line).

Figure 6. Particle kinematics (kn = 7.77× 104 N/m and en = 0.7, linear model): particle center position y (solid line);
particle velocity (dashed line).

3.2 Nonlinear model

As the linear model, the simulations parameters are also taken (Chen et al., 2007) (see Table 4) and the impact velocity
of the particle with the wall is v0 = −2.801 m/s. We applied for computation of the contact forces a nonlinear model
based on Eqs. 34, 35, 36, and 37.

Figure 7 also shows the particle center position y and the particle velocity v versus time (from t = 0 s to t = 1.6 s).
The contact force is modeled with nonlinear model and the particle rebounds after each impact with the wall. This figure
is similar with Fig. 5. As the normal restitution coefficient is close to unity, the damping effect is small and the nonlinear
elasticity does not influence the position and velocity curves.

Now, we describe simulations using the normal restitution coefficient equal to 0.7. Figure 8 shows the results of the
particle kinematics. Similarly to the case analyzed before, when the particle hits the wall, a contact occurs and the particle
is rebounded. As the coefficient of restitution is smaller than a unit, the particle jumps less high after each contact. The
contact duration in each particle bounce is smaller and decreases until zero when the particle remains on the ground. In
Fig. 8, we can see five collisions of the particle with the wall. The number of collision is smaller in the nonlinear case
because of effect of viscous damping and nonlinear elasticity.
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Table 4. Simulation parameters for single freely falling particle: nonlinear case.

Fall height 0.5 m
Particle diameter 0.2 m
Particle density 2600 kg/m3

Particle Young’s modulus 1.6916 MPa
Wall Young’s modulus 5.0748 MPa
Normal particle–wall restitution coefficients 0.9 and 0.7
Tangential particle–wall restitution coefficient 1.0
Particle and wall Poisson’s ratios 0
Acceleration of gravity 9.81 m/s2

Figure 7. Particle kinematics (en = 0.9, nonlinear model): particle center position y (solid line); particle velocity (dashed
line).

4. CONCLUSIONS

This paper presents the DEM method with “soft-sphere” mechanism for simulation of a particle system. The contact
forces are computed by linear and nonlinear models based on mass-spring-damper system. We derive the fundamental
equations for these two models. Using the MFIX code, the models are applied in the numerical simulations of a sin-
gle freely falling particle. Both models give similar results for the particle kinematics time-history. Non-dimensional
expressions, tables and graphics for linear and nonlinear models are also presented.
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