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Abstract. Recent paper found several stable regions for a sample of particles located between the orbits of Pluto and  
Charon.  One peculiar stable region in the space of the initial orbital elements is located at a = [0.5d, 0.65d] and e = 
[0.2, 0.9], where  a and e are the initial semi-major axis and eccentricity of the particles, respectively, and  d is the 
Pluto-Charon distance. This peculiar region (hereafter called sailboat region) is associated to a family of periodic  
orbits derived from the circular, restricted 3-body problem (Pluto-Charon-particle). We explored the extent of sailboat  
region by adopting different initial values of the orbital inclination and argument of the pericentre of the particles. The  
sailboat region is present for I= [0, 90°], and for two small intervals of  ω, ω = [-10°, 10°] and ω=(160°, 200°). Since  
the existence  and size of  this  stable region depend sensitively  on the initial  values  of  the orbital  inclination and  
argument of pericentre, its  extent is much smaller than the whole space of initial conditions. Therefore, we concluded  
that it is reduced the possibility of the New Horizons finding objects in this region during its passage through the Pluto  
system in July 2015.  
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1. INTRODUCTION 

Before the launch of the New Horizons spacecraft in 2006, Pluto system was  known to be formed  by only two  
massive bodies,  Pluto and Charon.  These two bodies  form a binary system due to its large  mass ratio (0.1165)  and its  
small separation distance, d=19570km (Buie et al. 2006). 

Recently small satellites were discovered in the external region of the system, beyond the orbit of Charon. Nix and  
Hydra, detected  in 2005 (Weaver et al. 2006), are located at about  2.5d and 3.3d, respectively, while P4,  detected in 
2011, is located  between theirs orbits. The discovery of P4 corroborated the results described  in the paper by Pires dos 
Santos, Giuliatti Winter & Sfair (2011). Through a sample of numerical simulations they could  obtain  the location and 
sizes of small satellites (ranging from 1 to 25km in size)  which can exist without cause any change in the eccentricities  
of Nix and Hydra larger than 10-3.

Last year another small satellite, temporarily named  P5, was found  interior to Nix's orbit. The discovery of these 
new four  objects raised the  question on the possibility of new satellites, or even a dust ring,  exist in this binary system.

Giuliatti Winter et al. (2010)  explored the dynamical behavior of a sample of coplanar particles located between the 
orbits of Pluto-Charon system for a range of  eccentricities of the particles varying from 0 to 0.99. New stable regions  
were identified and  the associated families of the  periodic orbits were derived from the  circular restricted three body 
problem, Pluto-Charon-particle. Most of their results corroborated the previous results obtained by Stern et al. (1994) 
and Nagy, Süli & Érdi (2006),  except for a small region  located   at  a = [0.5d,0.7d], a is the semimajor axis,  for a 
large values of e.  

In this work we analyse in details the origin of this peculiar small region and the variation of its size for different  
values of the orbital inclination of the test particles.  Since the New Horizons mission will pass very close to this region  
it is important to understanding its origin and its extend for different values of the orbital elements of the test particles.  
Ours results are presented in the last section. 

2. ORIGIN OF THE SMALL REGION

We numerically simulated the restricted 3-body problem  which can represent a sample of small particles in orbit 
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around Pluto (central  body) gravitationally disturbed by Charon (secondary body).  The eccentricity  of Charon was 
assumed to be 0.0035 (Tholen et al. 2008). The gravitational effects of the four satellites P5, Nix, P4 and Hydra were  
neglected since they are  small and  too far from the internal region. The timespan of the numerical integration was  
adopted to be 104 orbital periods of the binary (T = 65000 days). Those particles which stay in the system for the whole  
time of integration are considered to be in stable orbits (Winter  & Vieira Neto 2001). 

The initial orbital elements a and e was obtained by varying the following parameters: i) the semimajor axis  was 
uniformly distributed, about 0.5d from Pluto and about 0.25d from Charon, with step size  ∆a = 0.0008d and ii)  the 
eccentricity was varied from 0 to 0.99 each  ∆e = 0.0005.  The orbital inclination was assumed to be zero.  A collision 
was computed every time the distance between the test particle and the massive body was less than the radius of this  
body. Figure 1 shows only  the small region formed at a=[0.5d, 0.7d] and e=[0.2, 0.9], another stable regions were not 
shown in this figure.

Figure 1. Diagram of a versus e. The small stable region is shown in black. The nominal parameters of the particles
are: ω,= 0  and = 0, where Ƭ ω  is the argument of pericentre  and  is the epoch of the pericentre.Ƭ

    In order to identify the origin of this stable region we used the method of the  Poincaré surface of section. This  
method permits identify chaotic and regular trajectories located in the phase space of the circular restricted  3-body 
problem.  As pointed out before we assumed the eccentricity of Charon to be different from zero. Therefore we run the  
same set of initial conditions  by assuming the circular restricted 3-body problem. Our  results show that the small  
region keeps the same shape, only with a small increase in its size. Besides,  many authors claimed that the eccentricity  
of Charon is equal to zero.  
      About 100 particles, uniformly distributed in the x-axis, generated one Poincaré surface of section for each value of 
CJ. The method of the Poincaré surface of section confirmed the location and size of  the sailboat region: from the 
values of  CJ and x at dotx = y =0 we found the osculating values of  a and e in order to compare with the a versus e 
diagram. Winter 2000 proposed a criterion to measure the degree of the stability of a periodic orbit: the largest island  
surrounding the periodic orbit (shown as a point in the centre of the island) gives the size of the regular region. The  
small region matches the region obtained from the values of  CJ = [2.766, 3.236]. 
      Figure 2 shows a sample of Poincaré  surface of sections for six different values of CJ: 2.786,  2.936, 3.016, 3.056, 
3.116 and 3.224.  Only the periodic  and quasi periodic orbits (the islands)  are shown in Figure 2, the chaotic region  
was removed.

Figure 2. A sample of  Poincaré surface of sections for six different values of the Jacobi Constant. In each case are 
shown only those points  associated to the periodic and quasi-periodic orbits of the family “BD” 

(Broucke, 1968), which corresponds to the small region (Fig. 1).
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     After identifying the region, the periodic and quasi periodic orbits can be obtained. Generally, a dynamical system is  
periodic if after some period of time all the bodies have the same relative positions and velocities as they had before.  
Since the solution of the differential equations, which describe the system, is unique, the system will continue to repeat  
itself. The  periodic orbits associated with the planar, circular, restricted 3-body problem can be classified into two types 
(Poincaré, 1895, Szebehely 1967): periodic orbit of  the first kind and periodic orbit of  the second kind.  The periodic 
orbits of the first kind are originated from  particles  initially in  circular orbits, while in the second kind the particles are 
in  eccentric orbits located at the centre of the mean motion resonance.
     The centre of these islands corresponds to periodic orbits of family “BD”, designation given by Broucke (1968). The  
family  “BD”  is a sample of direct periodic orbits around the primary (Pluto). Broucke (1968)  studied the periodic  
orbits for the Earth-Moon system through computational simulations of the planar, restricted  3-body problem. Despite 
the difference between the mass ratio of the systems, Earth-Moon  and  Pluto-Charon, the behavior of the periodic orbits 
is similar. Figure 3 shows the  set of  periodic orbits of family “BD”  for each value of  CJ   presented in Figure 2.

Figure 3.  The  set of periodic orbits, in the synodic frame, for the
 different values of  CJ as shown in Figure 2. The barycentre is located at 0.

      Figure 4 shows the period of the periodic orbits (trajectory in the synodic frame) as a  function of the Jacobi  
constant (CJ). The period of the periodic orbits (T) is given in terms of the orbital period of Charon (Tcharon). This figure 
shows that the period of the periodic orbits changes significantly according to the value of the Jacobi Constant.  It  
shows a tendency in which  T tends to be equal to the orbital period of Charon (Tcharon) as the eccentricity grows (CJ 

decreases).  In the case of circular orbits (higher values of CJ) it would have a period close to the 2:1 mean motion 
resonance with Charon (Broucke, 1968).     

Figure 4.  Orbital period of the periodic  orbits, in terms of orbital periods of Charon (Tcharon),
as a function of the Jacobi constant (CJ).

3. VARIATION OF THE SIZE OF THE  REGION

In this  section we analyse  the sailboat  region  for  different  values  of  ω,  argument  of  pericentre,  and  I,  orbital 
inclination, of the particles. First of all, we assumed that I=0 and varied the values of ω from 0 to 360°, each  Δω= 1°. 
Figure 5 shows  the size of sailboat region for a sample of  different values of ω. The size of this region decreases from 
ω = 0  up to the value of ω = 10°, and start increasing from about 160°  to its largest size at 180°. From our numerical 
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simulations we found that the sailboat region exists only for two intervals  of  ω, ω = [-10°, 10°] and ω = (160°, 200°). 
The existence of the sailboat region is confined to a small interval of the initial values of the argument of pericentre.  
The size of such interval reveals the strength  of the family of periodic orbits.

Figure 5.  Diagram a versus e for different values of   ω.

We also  numerically integrated a set of particles for different values of I from 10°  to  90°,  each  Δ I= 10°. For each 
value of the initial inclination we adopted two values of the argument of the pericentre, ω = 0  and ω = 180°. Sailboat 
region is present for  all values of the inclination of the particle, regardless the value of ω is assumed  to be 0 or 180°. 
The maximum size of the region is reached when I=0 and its minimum size is at I=90°. Figure 6 shows the size of 
sailboat region for  different values of I. Sailboat region disappears for I > 100°  as has been shown in Giuliatti Winter 
et al. (2013).

4. DISCUSSION

The searching for stable zones can help to detect  debris  which can pose as a harm for the New Horizons mission.  
In this work we explore in details one peculiar stable region located at  a= [0.5d, 0.7d], close to the  trajectory of the 
spacecraft.  We  numerically  simulated  the  restricted  3-body  problem,  Pluto-Charon-particle,  and  neglected  the 
gravitational effects of the four small satellites, located exterior to the Charon's orbit. 

From the Poincaré surface of sections we identified  the peculiar region by comparing to the a versus  e diagram. 
From each surface of section we  identify the periodic and quasi periodic orbits. Sailboat region is associated to a family  
of  periodic orbits derived from the circular  restricted  3-body problem. The centre  of  these islands corresponds  to  
periodic orbits of family “BD”, firstly presented by Broucke (1968) in his analysis of the Earth-Moon system. 
   We also explored the extent of sailboat region by adopting  different values of the initial orbital inclination and  the  
argument of the pericentre of the test particles. Since the existence and size of this stable region depend on these two 
initial orbital elements, its  extent  is  smaller than the whole space of  initial conditions. Therefore it is  reduced the 
possibility of the New Horizons  finding  debris/objects  in this region during its passage through the Pluto system.
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Figure 6.  Diagram a versus e for different values of   I.
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