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Abstract. This article portrays the study of an atomic force microscope, in a non-contact mode, from analytical, 
numerical, mathematical, experimental modeling to control. The analysis of the model is made according classical 
models in the literature and a model was obtained through experiments with AFM to test the efficiency of the Linear 
Optimal Control being applied to control and suppress the chaotic motion present in the atomic force microscope. 
Comparison between a classical model and an experimental model is made through the simulation results that are 
presented with an aim to identify the advantages, disadvantages, possible errors of modeling and one matrix 
uncertainties like capillary forces, noises or a small force due to air resistance between tip- surface. 
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1. INTRODUCTION  

 
The Scanning Tunneling Microscope (STM) and the Atomic Force Microscope, both invented by G. Binnig, are the 

most powerful tools to perform the surface investigation (Binnig and Gerber, 1986). Instead of showing or using 
different models, from the literature that characterize the dynamics of the AFM’s cantilever, here is trying to acquire a 
model using raw data obtained from the AFM’s calibration, such as tensile strength, deflections, forces between tip-
distance surface, springer constant, damping, amplitude, frequency, vibration velocity, acceleration, q factor and mass 
of cantilever. In the AFM system a microcantilever identifies the surface that is being investigated, bending upwards or 
downwards according to the topography (Bueno, A.M., 2012).These deflections are caused by forces, acting between 
the probe and the sample. The different techniques provide several opportunities to take pictures of different types of 
samples and to generate a wide range of information. The methods of making images, also called scanning or modes of 
operation, mainly refer to the distance maintained between the probe end (which we call tip) and the sample at the time 
of scanning, as well as the ways to move the tip over the surface to be studied. The detection of the surface is carried 
out aiming at the creation of its image.  

There is a continuum of possible ways of making images, due to different interactions depending on the distance 
between the tip and the sample, as well as the detection scheme used. The choice of the appropriate mode depends on 
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the specific application. When the tip approaches the sample it is first attracted towards the surface, due to a wide range 
of attractive forces in the region, as the van der Waals forces.  

This attraction increases until the tip is very close to the sample, the atoms of both are so close that their electronic 
orbits begin to repel. This electrostatic repulsion weakens the attractive force over distance. The force is void, when the 
distance between atoms is about a few angstroms (about the characteristic distance of a chemical bond). When the 
forces become positive, we can say that the atoms of the tip and sample are in contact and repulsive forces eventually 
dominate. 

The AFM system has become a popular and useful instrument to measure the intermolecular forces, with atomic-
resolution, that can be applied in electronics, biological analysis, materials, semiconductors etc. The AFM systems may 
experience undesirable and unexpected behavior and instability, due to the effects of nonlinearities of the systems. 
Many kinds of control methods aiming to decrease or eliminate the effects of the nonlinearities that have been studied 
see Hornstein et. al (2008) and Yabuno (1999). 

Through an atomic force microscope was built the force-distance curves that can easily visualize the three operating 
modes of the AFM (non-contact mode, tapping mode, contact mode). For this realization was used three kinds of 
microcantilevers (two rectangular and one triangular) and the microscope is not remained in constant amplitude, 
causing a difference in tip-sample size. Classical AFM models have this factor in Van der Waals equation and even 
without this approach it is possible to do a regression to a system of differential equations and thus find approximately 
the values of damping, non-linear springer, and others using raw data file of the AFM, normal linear spring, cantilever's 
mass, others capillary forces, displacement of cantilevers, deflections, velocities of cantilevers, Q factor, and natural 
frequency.  

The method to obtain the normal spring is credited by Sadder et. Al. (1999) and was calculated  from the length and 
width of the microcantilever measured in the optical microscope, using the factor q, and the resonance frequency. The  
microcantilever’s mass is obtained by its density, making mass divided by volume. 

 
The method of phase space reconstruction are derivative coordinates of which Packard et al. (1980) is used: 
 

 ̇( )  
 [   (   )  ]   (      )

  
 

n=1,2,3,…,512 samples and   =1/12.5 seconds 
 
In final session is reserved to Numerical simulations are used in order to analyze the efficiency of the control 

technique applied to the AFM system. However, due to simplifications and inappropriateness of the system and 
simulation models, to uncertainties in the system parameters and to dynamic instabilities, the simulation results may 
present errors. In order to improve the simulation   results, uncertainty analysis is used.  

In this article we study the case where the system has a chaotic behavior, using the mathematical model of AFM 
proposed by Jalili et. al (2004), Hornstein et. al (2008) and Wang et al. (2009). With the goal of suppression of chaotic 
behavior it will be considered two control techniques, the Optimal Linear Feedback control proposed by Rafikov and 
Balthazar (2008). 

The paper is organized as follows: Section 2 begins with non-linear model of the AFM system, the parameters 
being determined to create chaos, using perturbation methods we obtain an analytical solution. Section 3 describes the 
application of the application of the optimal linear control and its approximation and validation with a simulation of real 
AFM. In Section 4 we present the acknowledgements. In Section 5, we present the concluding remarks. 

2. AFM CONSTITUTIVE MODELING 

 

It is well known that the nonlinear dynamics of the AFM is an emerging topic of research in Engineering Sciences, 
since its discovering by Binnig and Quate (1986), and according to a number of authors  such as Jalili et. al (2004), 
Garcia et. al (2000), Raman et. al (2008) and Lozano et. al (2008) presenting the mathematical models that govern the 
dynamics of AFM cantilevers.  
According to Jalili et. al (2004) and Wang et. al (2009) a mathematical model to a cantilever-sample interaction of an 
AFM process, may be presented as shown in Fig. 1. The cantilever is taken as a single spring-mass system, with a 
spring constant k and equivalent mass m.  
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Fig. 1. AFM  Model of Sinha (2005) 

2.1  Modeling the AFM  

 
The cantilever interacts with the sample, via a sharp tip, which is mounted on the cantilever. The cantilever–tip–sample 
system is mathematically modeled by a sphere of radius sR  and mass sm  suspended by a spring of stiffness:

ss nll kkk  . We will frequently refer to the mass sm , as being the tip of the cantilever. Van der Waals forces 
denotes the attraction/repulsion force (i.e., the interaction forces), between the sphere and sample surface. 
Thus, the potential for the tip–sample assembly is given by: 
 

  
 
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6
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The net energy of the system due to the mass  sm  (tip-sample interaction) of the cantilever is given by E : 
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where: 
sl

k  is the linear stiffness, 
snlk  is the nonlinear  cubic stiffness, 

s

l

m
k

s1  is the first-order mode frequency, 

s
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m
k

s2  and 
sl

cc

k
RAD

6
 , where D  is the molecular diameter, cA  is a Hamaker constant, cR  is the cantilever-

tip radius and bZ  is the distance from the fixed coordinate frame to the sample. Typical values that are found in AFM 

application are 150cR nm, 1910cA  J, srad /72.741661   and 0167.0
sl

k  N/m [6, 22]. Considering 

XX 1 and XX 2 . The dynamics of the tip-sample system derived from the above governing equations of motion 
is given below:  
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








                                                                 (3)                                                          

The nonlinear dynamic system describing the AFM operation in Fig. 1 is obtained based on the model proposed by 
Payam et. al (2009) including the nonlinear cubic stiffness. Substitute (1) and (2) in (3): 
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The beam is forced by a small sinusoidal force, which is given by )sin(wtf , where w  is excitation frequency and 
f  is the amplitude of excitation. Considering the sinusoidal force the differential equation system can be written as: 
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      (5)                                                               

Or in dimensionless form: 
 

 
sin2

1

3
12112

21

c
xz

bxaxax

xx












                    (6)                                                                 

 

where: wt , 
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1  , 
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fc 2  .  

 
Considering the parameters: 02173.0b , 6364.2c , 5.2z , 14668.01 a  and 1269.22 a . In Fig. 2, 

the displacement, the phase portrait diagram, the Lyapunov exponent and the Poincare map for the considered micro-

cantilever are shown. 

                                               

(a) (b)    

                                         
                                        (c)                                                                                           (d)

 

  

Fig. 2. (a): The displacement of AFM without control. (b): Phase portrait of atomic force microscope. (c):  Exponents 
of Lyapunov: 335.01   and 035.02  . (d):  Poincare map      

 

2.2  Searching of an analytical solution 
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Yabuno (2003) and Raman (2003) wrote the van der Waals force in terms of the Taylor series, justifying the fact 

that the force is highly nonlinear, considering by approximation, the cubic and quadratic terms, as linear and constant, 

help the study of the adopted mathematical model, applying the theory of perturbation techniques and the analysis of the 

parameters of damping, as well as the elastic constant of the cubic and quadratic terms are easier to handle. In this work 

the nonlinear term 
 21xz

b


  is expanded in a Taylor series at the point 0239.01  stxx , critical point of: 

 
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                                                                                                 (7) 

 
And replacing (7) into (6): 
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                            (8) 

                                               
  

where: 00347.0L , 1439.0J , 00167.0I , 1260.2H  and 6364.2c . 

 
2.2.1 Multiple scales method 

 
We use the method of multiple scales to find an approximate analytical solution to the above governing equation; 

This is done for a balance of order as follows. 
 

0sin" 22232  wtcLJIH                                                                       
                                                                                           (9) 
 
Where x  and ε is the parameter responsible for this balance [26]. Introducing the scales 0T  and 1T , 

looking for solutions in the following  way: 
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Replacing (10) into (9) and considering the derivatives (11), (9) is represented in the perturbed form: 
 

        wtcLJIHDDD sin222322
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              (12) 
 
Resulting: 
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One possible solution for   is: 
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Where: 
14 




J
Ik , 0  is a constant and a is assumed to be different from zero . 

 

3. Control in AFM  

 
The tip-sample distance must be kept constant by the control system at a pre-defined setpoint. Vertical tip-sample 
relative motion is then due to topographic changes in the sample surface. The AFM system generates the topographic 
images, during the scanning process, based on the tip-sample distance feedback signal (Bueno et. al 2012).  In this 
section, we propose stabilization of the chaotic microcantilever oscillations using Optimal Linear Feedback control 
method and SDRE control method. 

 

3.1  Optimal Linear Feedback Control   

 

We use the method developed by [16] to control the system.  This method seeks to find an optimal linear feedback 
control where they find conditions for the application of linear control technique in the nonlinear system, ensuring the 
stability of the problem. We remark that, due to the simplicity in configuration and implementation, the linear state 
feedback control is especially attractive [16, 27]. So far, this control method has been successfully applied to various 
works including chaos, see [16, 27-32]. 
 
3.1.1 Application of optimal linear feedback control 

 
The equations that describe the motion of the system with the control law U are described by the following nonlinear 
equations:  
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With  

ofo uuU  ~                                                                                                              

                                                                                         (17) 

Where ofu is the feedback control, and ou~  is the feedforward control, for optimal control, given by: 
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Where *x  is the desired periodic orbit. Replacing (18) into (16) and defining the deviations from the desired orbit:  

)( *xxe                                                                                                                            
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We obtain:  
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Considering the system (20) written in the following way:  
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According to [27], if there are an error weighted matrix Q , and the control weighted matrix R , positive definite 
symmetric matrix,  and a matrix Riccati P , such that the matrix: 
 

),(),(~ ** xePGPxeGQQ T                                                                                      

                                                                                         (22) 
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is positive definite matrix G  restricted, then the control ofu  is optimal and transfers the non-linear systems from any 

initial state, to the final state: 

0)( e                                                                                                                        

                                                                                         (23) 

minimizing the functional:  

dtuRueQeJ of
T

of
T )~(

0
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

                                                                                                

                                                                                        (24) 

Then control fu0  can be found by solving the equation:  

ePBRu T
of

1                                                                                                               

                                                                                        (25) 

Since the symmetric matrix P , can be obtained from the Riccati algebraic equation 

01   QPBPBRPAPA TT                                                                                      

                                                                                         (26) 

The matrix A  and B  have the following form: 
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

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200
0250

Q  and   1.0R  . 

and using the command LQR from Matlabr, we get: 











7312.19853.4
9853.45602.86

P  and  3120.178535.49K . 

Then replacing them, into (25) the control is given by: 

21 3120.178535.49 eeuof                                                                                        

                                                                                         (27) 

Finally, we can conclude that the optimal function ofu  has the following form: 

   *
22

*
11 3120.178535.49 xxxxuof 

        (28)
                                                                 

For the optimal control verification (27), the function (22) is numerically calculated with  eQeL T ~)(  , if )(L , 

resulting to be defined positive. It is the sufficient standard to assure that the control (27), obtained with the use of the 

matrixes Q  and R , will be optimal, and Q~  is defined positive. The next figure shows the trajectory of the periodic 

ISSN 2176-5480

8254



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

function, considering the application of control, and the desired orbit ( *
1x ) the equation (15).

   
 

   (a)         (b)               (c)
 

 

Fig. 2. (a): Phase portrait, chaotic (black) and controlled orbit (blue) (b): Signal deviations (c): )(tL  calculated 
in optimal trajectory 

 

In Fig. 3, it can be seen that the control was effective to move the system from a chaotic state to a periodic orbit (15), 
using feedback control (28) just enough to take periodic orbit. Also, we can see in Fig. 3.f, the control signal used by the 
feedforward control (18) to keep the system in the desired orbit, we should consider this as a reference signal to move. 
 
3.2  Modeling experimental AFM  

 
The experimental work was performed with a Veeco afm® and obtained raw data file to perform via matlab the force 
curve. Matrix of deflections, z displacements in time, signals piezo, z piezo , q factor, frequency was collected to make 
a nonlinear regression, finding an equation to analyze each variable and its influence, visualized in the phase portrait  
modeled  more next to real. 
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Fig.3. (a): Tip-surface distance versus force, calculated through multiplication of K by deflections, (b) distance tip-
surface in time which shows the distance between tip surface positive to negative space, (c) base excitation from piezo 
signal (V), (d) Phase portrait of experimental data                 

 
 

  
 
                    Fig 4. On line Sader Method        Fig 5. Dimension’s Cantilever AFM  
 

The regresssion is made to obtain the equations for the dynamics AFM. It was chosen the method of nonlinear 
regression lsqnonlin and found the cubic term k³, damping (C), and the distance of tip-surface was studied which 
determine major or minor interaction tip surface. There many possible to make the regression and the first step is to 
analyze the equation to begin the regression.  
 

               ttttt fxKKxxCxM  3           (29) 
       tttt fxKKxxM  3            (30) 

       tttt fKxxCxM                                                                                                                                 (31) 

             tttUt yncerta fxKKxxM  3
int           (40) 

 
The results to the equation have a better convergence to the true and there is a smaller error shown in equation (40). The 
error close to zero would be the ideal characteristics of the actual model to the equation, but we know that there are 
other forces acting in the equation. The error (in Newtons) is an uncertainty, with chances of it being a small force due 
to air resistance. M is the mass,  tx is the matrix of cantilever velocities, U is matrix of uncertainties, K is the Normal 
spring constant, K³ is the non linear spring, x(t) is the cantilever deflections and the f(t) is the Van der Waals force and 
the base excitation. When U(t) is near from zero, it would show how much the model is near to real model. The 
numerical study dimensionless of AFM experimental model compared with AFM model (6) is: 
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The big problem in the modeling from real to equation is the way it was acquired matrices, when distance tip- surface 
size isn’t keeping the constant amplitude. The tip moves down toward the sample and slope. The matrix of piezo signal 
is an approach of sinusoid signal, sZ is the position of matrix deflection which occurs contact. The alteration stays to 

distance z which is represent in form of zwtd )cos( . This is the most real representation possible and the variables 
obtained is showed as follow: 
 
 
3.3 Table 1. The following table shows some properties obtained in experiments and numerically via Matlab®.  

 
Cantilever Properties/Parameters/Variables unit Method of 

discovery 
Citation/proceedings/formula 
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 Normal Spring constant (  ) N/m Sadder Method http://www.ampc.ms.unimelb.ed
u.au/afm/calibration.html 

Dumping (c) N.m/s Lsqnonlin Matlab® comand 
Hamaker constant (H) Joule literature           
Non linear Spring (  ) N/m³ Lsqnonlin Matlab® comand 

Velocity ( ( )) nm/s calculated Packard(1980)and Takens(1981) 
Deflection ( ( )) nm Raw data afm Conversion by sensitivy 
Aceleration ( ̇( ))       calculated Packard(1980) and Takens(1981) 

Cantilever’s mass (m) g Material Density V=m/d 
Amplitude (due piezo) (A) V Raw data afm - 

Sensitivy (S) nm/V Tan force curve Matlab® comand 
Z cantilever position (z) nm Raw data afm - 

Z piezo position (zp) nm Raw data afm - 
Time (t) s Regulator - 

Pixels (pix) - 512 points - 
Material surface (mat) - - Silicon 
Cantilever’s material  Cantilever’s Manual        

Q factor (Q) - Afm information - 
Drive frequency (df) Hz Raw data afm - 

Phase (ph) - Raw data afm - 
Cantilever’s Width (cw)  nm Optical microscopy - 
Cantilever’s Height (ch) nm Optical microscopy - 

Tip’s Ratio (R) nm Optical microscopy - 
Natural Frequency (  ) Hz Calculated - 

Force (F) nN Calculated F=kx(1) 
 

3.4 Simulations of experimental AFM model.  

The equation was work in dimensionless form and was obtained: 

)()(,.000001.09.0)(,,10.3
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With U(t) a matrix of very small elements of force.(around 1010 ) 
 
 

  

(a) (b) 

Fig. 6(a) is the phase portrait with various initial conditions and a new formulation for z parameter . 6(b) is the phase 

portrait with parameter z in form constant equal a 2. In both cases the AFM oscilator stays in periodic orbit and the 

fig(b) is a real case that is aproach a AFM oscilator controled by optimal linear control. 
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4.  CONCLUSIONS 

Using computer simulations we have shown that for certain parameters the AFM system exhibits chaotic behavior. 

In order to suppress the chaotic behavior, keeping the system in a periodic orbit, were compared two AFM system, 

formulations, analysis, nonlinear phenomena, and control strategy.  

Analyzing the Figs. 2(a) and 6(b), we conclude that control technique is effective in controlling the system for 

special conditions, and the Optimal Linear Feedback bring the system to the periodic.  
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