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Abstract. The simulation of critical crack propagation in Functionally Graded Materials (FGM) is an open problem in 
the mechanical simulation field nowadays. In the present work this problem is analyzed using the Discrete Element 
Method (DEM). This method has been used with success in several areas of engineering where the simulation of 
fracture and fragmentation is relevant. In the present paper several examples are shown. In these examples the results 
are presented in terms of energetic balance during the fracture process and crack configurations during the whole 
fracture process. 
The results of the examples that will be presented, show a good correlation with the other author’s results, and 
therefore indicate that the DEM method can be considered as an alternative tool to simulate and help to understand 
these kinds of problems. 
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1. INTRODUCTION  

 
The critical crack propagation in elastic solid materials, particularly when a variable distribution of mechanical 

properties is presented, has received considerable attention from researchers and engineering communities in the last 
years. The Functionally Graded Materials (FGM) is a new generation of engineering composites characterized to have a 
smooth variation of mechanical/thermal, or electromagnetic properties. They are new advanced multifunctional 
materials, which are tailored to take advantage of their constituents, for example in a ceramic/metal FGM, heat and 
corrosion resistance of ceramics work together with mechanical strength and toughness of metals. To carry out an 
application of FGMs, scientific knowledge of fracture and damage tolerance is important for improving their structural 
integrity.  

For this kind of problems, the Finite Element Method with cohesive interfaces is very much used (Xu and 
Needleman, 1995; Paulino and Zanhg, 2005). The version of the Discrete Element Method (DEM) that will be used in 
the present work has also been employed in problems where the fracture and fragmentation need to be taken into 
account during the analysis. 

Some examples at this respect are mentioned as follows: In Schnaid et al, 2004 the rupture foundation built with soil 
bearing a soft sand bed is shown, in Dalguer et. al, (2003) the simulation of the generation and posterior propagation of 
the seism are taken, in Rios and Riera (2004), the scale effect in concrete is presented and finally the most recent work 
of Miguel et. al (2008) where the scale effect in rock mechanic is studied. In the previous work carried out by the 
authors (Barrios D’Ambra et al., 2007; Kosteski et al., 2006 and Kosteski et al. 2008) , it was demonstrated that DEM is 
capable to measure both the static and dynamic Stress Intensity Factor through different methodologies.  

The DEM success to model failure mechanism in brittle materials and the ability of the method to capture the 
phenomenon as the nucleation of defect motivates its application in problems of Fracture Mechanics. 
 
2. DISCRETE ELEMENT MODEL DESCRIPTION  

 
DEM, in the used version, was developed by Hayashi (1982) and then modified by Rocha (1989) and Iturrioz 

(1995). It consists essentially in continuous spatial discretization in reticulated regular modules, where the stiffness of 
bars is defined in such a way to represent the equivalent continuum. 

The model mass is discretized and concentrated in the model nodes. Figure 1 shows a module with eight nodes in 
their vertices and a central node. Each node has three associate degrees of freedom given by the spatial components of 
the displacement field u. Longitudinal and diagonal elements with length Lc and 3 / 2  Lc respectively join the masses.  

The linear elasticity field Hayashi (1982) checks the equivalence between the cubic array and elastic orthotropic 
solid with the major axes of the material oriented in the longitudinal element direction. A restriction should be imposed 
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in the Poisson module of ν = 0.25 for perfect equivalence. For other ν values there are slight differences in the shear 
terms, which can be ignored, especially when our interest is the nonlinear response of the studied model. 

 
(b)(a)

X'
X

Y'

Z

Y

 
 

Figure 1. a) Core cubic module detail, b) Prism composed of several cubic modules. 
 
When the materials have linear elastic behavior we can express the N degrees of freedom system motion equation 

resulting from the spatial discretization as: 
 

+C = (t)Mu u + Ku q  (1) 
 
where M denotes the diagonal mass matrix, u, u and u represent displacement and generalized accelerations vectors 

respectively. K represents the stiffness matrix. On the other hand the vector q(t) contains the external forces applied. As 
simplified hypotheses the damping matrix C is adopted, proportional to the mass. Equation (1) can be numerically 
integrated in time domain using a classic scheme of explicit integration (Method of Central Finite Differences). 

By means of the nodal coordinate updating in each time step allows to consider the finite displacement as response 
in natural way i.e. to consider the non linearity geometrics in the analysis without additional cost. 
 
2.1 The elemental constitutive law for the brittle crack modeling 

 
In 1989 Rocha proposed a constitutive bilinear law for the bars based on Hillerborg (1979) model. This law allows 

DEM to model the brittle failure of the material. In general lines this law can be presented as follows: 
 
Force = function (bar strain) (2) 
 
The constitutive relation is shown in Fig. 2. This figure demontrates that the compression element response is linear 

elastic, the rupture of the compressed model happened by indirect traction (Poisson effect). In Fig. 2 Pc represents the 
maximum tensile force transmitted by the element, εp represents the associated strain to Pc, EA is a constant 
proportional to the stiffness that links the two before mentioned parameters that is (Pc = EA εp) and kr is a ductility 
parameter that permits to compute the limit strain εr to which the element exhausts its capacity to transmit efforts. 

 
 

Figure 2. Elemental Constitutive Law of the DEM bars. – a) Adopted constitutive diagram with its control parameters; 
b) Load and unload scheme. Rocha (1989). 
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In this way DEM takes into account the nucleation of damaged and posterior material failure, this fact translates 

itself in deactivation of the bars, which exhaust their strength.  
 

3. APLICATION EXAMPLE 
 
The present example shows a rectangle plate with central notch of Polimetilmetacrilate (PMMA).The dimensions in 

Fig. 3 are presented. This plate is submitted to imposed constant strain velocity of 5m/s in its extreme borders. Paulino 
and Zhang (2005) studied the influence that the Functionally Graded Material (FGM) has in the crack dynamic 
propagation in the same geometry using the Finite Element Method with cohesive zone interface. The cohesive 
elements were implemented in the region where the crack propagation could occur. 

The cited authors studied the influence of three types of different FGM in the crack propagation event. In case 1 
homogeneous property was considered. In case 2 a hypothetic FGM material was proposed, where just the cohesive 
properties graded linearly in y axis direction. Finally, in case 3 not only the cohesive properties, but also the finite 
element properties were graded. 
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Figure 3. Layout and boundary condition of the rectangular plate with central notch and with constant velocity imposed. 
 

3.1. DEM Model 
 
Only the middle of the plate was modeled due to the geometry and load symmetries of the problem. 
The plate was discretized with 60 modules of each side and one module in the thickness direction. The boundary 

conditions applied permit to represent the left border as a symmetry axis. The plane strain condition was imposed fixing 
the displacements in the thickness direction; the half of the notch was discretized using 6 cubic modules. The material 
properties and the main model characteristics are presented in Table 1. 

 
Table 1. Material Properties and parameters used in DEM Model. 

 
Material Properties DEM Parameters 
E 3.24 GPa Lc 5.00E-5m 
ν 0.35 ν 0.25 
ρ 1190 kg/m3 ∆t 1.0E-8 s 
Gf 352.3 J/m2 εp 0.025 
εYLD 2-6% kr 2.41 

 
Figure 4 shows the constitutive law adopted for the material considered homogeneous in the vertical direction of the 

plate. 
The critical step time is related to the time that an elastic wave takes to pass through the normal elemental bar. In the 

present case for homogeneous material the step critical time was ∆tcrít =1.82 E-8 s. 
The main difference between Paulino and Zhang’s (2005) analysis and the present study, is the Poisson coefficient 

value, in DEM model, when we work with the cubic arrangement (see Fig.1) we get limited to work with Poisson’s 
coefficient of 0.25, if we want to model an elastic isotropic and homogeneous material. 
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Figure 4. The elemental constitutive law used in DEM model. 

 
If we want to model elastic and isotropic materials with other Poisson’s coefficient, it will be necessary to employ 

another kind of geometric arrangement. 
In table 2 the properties of the cases studied by Paulino and Zhang (2005) and the parameters adopted in DEM 

model are illustrated. 
 

Table 2. Analized cases. 
 

 y position E [GPa] GIc [N/m] 
Case 1:  homog. -1/2 W to 1/2 W 3.24 352.3 

1/2 W 3.24 528.4 Case 2: 
graded GIc -1/2 W 3.24 176.1 

1/2 W 4.86 528.4 Case 3: 
graded E and GIc -1/2 W 1.62 176.1 

 
3.2. Obtained Results 

 
3.2.1. Case 1: Homogeneous case 

 
The homogeneous material is considered in this first case. Thus in this case there isn’t any variation in the elemental 

constitutive law in DEM model. 
The Figure 5 a) shows a rupture configuration obtained by Paulino and Zhang (2005) that also simulates the middle 

plate, taking into account the advantage of having symmetry in boundary conditions and in its geometry. Also it is 
possible to observe in Figure 5 a) that the main crack begins to branch when it reaches a length of 1.05mm with an 
approximate angle of 29° in relation to the horizontal direction. 

 

           
 

Figure 5. Final configuration for the case 1: Homogeneous material, a) Paulino and Zhang (2005), b) DEM.  

a b
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In Figure 5b the final configuration obtained with DEM is shown using the parameters indicated in Table 1 with 
time step in the integration scheme of ∆t de 0.10 E-8 s. The comparison between Fig. 5a and b shows that in DEM 
model the length where the bifurcation begins is 1.0mm and the branch angle is 32° in relation to the horizontal 
direction). 

Another characteristic that we see in Fig. 5 (a and b) is the similarity between the two final configurations, for 
example, it is possible to observe a secondary branching in both figures. 

The lack of symmetry in the final configuration of DEM simulation is a characteristic in unstable propagation 
process. This method has been very sensitive to perturbations that occur during the process. This perturbation could be 
produced by roundness errors in the calculus and due to little changes in the step integration time.  

If these changes are carried out in DEM model, the final configuration is different in details, but shows the same 
general aspect. 

 
3.2.2. Case 2: Graded GIc 

 
In the present case only a toughness parameter Gc is graded in vertical direction. 
The cohesive interface of the Finite Element Model used by (Paulino and Zhang, 2005) is characterized by three 

parameters that are: the normal maximum tensile in the interface Tn
max , the critical opening displacement δn and the 

area closed by the curve that is proportional to the toughness Gc. The grade in the interface properties that was 
implemented modified the curve, as illustrated in Fig. 6(a). 
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Figure 6. a) The cohesive interface law used by Paulino and Zhang, 2005. b) The elemental constitutive law used in 
DEM implementation to model the graded material in case 2. 

 
The implementation of the graded material proposed in case 2, with DEM, was carried out through the way 

indicated in Fig. 6b. 
It is possible to observe that Elastic Modulus directly linked with the initial slope is maintained constant. The Gc 

graduation is obtained modifying the critical strain εp , maintaining the εr constant to facilitate the comparison with the 
cohesive model. 

The property material in the inferior border is: Gc = 176.1 N/m and εp = 0.0125, εr = 0.06 , these values grade 
linearly up to Gc = 528.4 N/m, εp = 0.0375 and εr = 0.06 in the superior border. 

As the toughness minimum occurs in the inferior border and the maximum one occurs in the superior border, it is 
expected that the crack propagation occurs in the inferior region of the plate, as it is possible to observe in Fig. 7 a and 
b. 

The comparison of Paulino and Zhang, 2005 with DEM in terms of final fractured configuration shows a significant 
similarity. 
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Figure 7. Configuration of rupture obtained for case 2 graded material, a) Paulino and Zhang, 2005. b) DEM. 
 

3.2.3. Case 3: Graded E and GIc 
 
In case 3, the Elasticity Modulus E and the toughness parameter Gc are changed simultaneously in vertical direction. 

At Paulino and Zhang (2005) a graduation was proposed to the interface properties in the vertical direction in the same 
manner of case 2, and the Elasticity Modulus E, in the elements, was modified.  

In DEM approach for case 3, the constitutive elemental law was modified as shown in Fig. 8. 
 

-0.15 0.00 0.15 0.30 0.45 0.60 0.75

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14  CER for -1/2W
 CER midle
 CER for 1/2W

F 
(N

)

ε (%)
 

 
Figure 8. The Constitutive Law used in DEM implementation shows the graduation used in the vertical direction for 

case 3. 
 
In Figure 9 the comparison between Paulino and Zhang’s (2005) implementation and DEM implementation, in 

terms of final configurations, are shown. In the present case, the similarity of the two configurations is not too clear, but 
both show the same general tendency. 

 
3.2.4 Comparison in terms of Energy Balance 
 

In the present section we discuss the results in terms of Energy Balance during the whole fracture process. In Figure 
10a the complete balance of energy during the whole process for case 1 is shown. Figures 10 b, c, d, the elastic, kinetic 
and dissipated energy through damage are shown for the three cases, respectively. 

 

a b
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Figure 9: Final configurations obtained in case 3. a) Paulino and Zhang (2005). b) DEM. 
 

As it follows, we mention some observation about the Figure 10 a to d. 
- The main differences observed are between case 1 and cases 2 and 3. 
- Case 1 shows more dissipated energy through damage due to the more quantity of fractured area generated in the 

fracture process.  
- In Fig. 10 b the minor peak in case 2 and 3, curves are produced by the several secondary branching, that occur in 

these cases.  
- In Fig. 10c the abrupt change in kinetic energy in cases 2 and 3 shows a sensitive change in the crack propagation 

velocity during the whole process. This is in accordance with the final configuration obtained, where quantities of 
branches and secondary cracks appear more than in case 1.  
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Figure 10: a) Energy balance during the simulated process in case 1, b) The elastic energy, c) Kinetic energy, d) damage 
dissipated energy for the three cases analyzed. 
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4. CONCLUSIONS 

 
In the present work the Discrete Element Method to simulate a Graded Material example, analyzed before by 

Paulino and Zhang (2005) using the Finite Element Method and cohesive interfaces, was employed. 
The comparison between two approaches show a good concordance and in consequence verifies that the Discrete 

Element Method could be used in problems where it is necessary to simulate a critical crack propagation. The results in 
terms of energy balance permit to explain this kind of process better. 

Previous works accomplished by the authors such as Kosteski et. al (2008) the Calculus of Static and Dynamic 
Fracto-Mechanic parameters in geometric configurations of different levels of complexity using DEM were shown, and 
the results are satisfactory also in these cases.  
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