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Abstract. The development of advanced nuclear reactor conceptions depends largely on the amount of available data 
to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in 
the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic 
signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict volumetric 
fractions in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in 
an experimental system utilizing a Plexiglas vertical bubbly column. Five different volumetric fractions were 
generated. The bubbles were photographed and measured. To evaluate the different volumetric fractions it was used 
the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting 
volumetric fractions by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network 
using ultrasonic signal in the frequency domain can evaluate with a good precision the volumetric fraction of this 
system. 
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1. INTRODUCTION  

 
The detection and characterization of bubbles in thermo-hydraulic systems is essential for the safety and 

development of the primary cooling system of advanced nuclear reactors. The experimental measurements of two-phase 
flow parameters are important to confirm theoretical predictions and to validate computational codes. In nuclear 
reactors cooling systems great care is necessary in the control of the flow parameters due to the risk of occurrence of 
loss of coolant and its consequences like the onset of nucleate boiling and formation of different two-phase flow 
regimes.  

There are many techniques for the measurement of two-phase flow parameters. The techniques using electrical 
conductance like hot wire anemometers and electrical capacitance are invasive and therefore are flow interfering and 
need a connection between the probe and pipe to each measurement point. This difficult the calibration and the pipe is 
subject to leakage (Divora, B. et al (1980) e Andreussi P. et al (1988)).  The pressure differential techniques are 
considered as semi-invasive technique. Matsui (1984) studied the vertical two-phase flow identification related to the 
pressure variation with statistical analysis. Although these techniques are relatively easy to implement, they require 
measurement points which incur leakage risks. 

The main noninvasive techniques used to measure parameters of two-phase flow are optical, radiation techniques 
(X-ray, γ-ray or neutron absorption radiography and X-ray and γ-ray tomography) and ultrasonic. All of them have 
advantages and disadvantages and each one contribute to increase the confidence in the final evaluation.  

The main optical techniques are laser Doppler anemometry (LDA) and particle image velocimetry (PIV). The LDA 
technique yields good measurements of flow velocity at specific points. Vial et al (2001) applied this technique in a 
bubble column to measure the average axial and tangential velocities in a maximum void fraction of 20%. PIV can 
measure velocities using the laser sheet. Lindken and Merzkirch (2002) used this technique to measure the velocity of a 
bubbly flow. These two techniques, LDA and PIV, need a transparent pipe and are not applicable in opaque fluids. The 
radiation attenuation techniques have high power of penetration and do not have the limitation of optical techniques but 
require a heavy safety structure, while the tomography techniques are expensive. 

The ultrasonic techniques have many advantages: they are non-invasive and do not cause any leakage risks and 
changes in the flow regime because it is not necessary to hole the pipe, they do not need safety care to operators, they 
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are not expensive, they can be used in high pressure and temperature flows, and they can be used in opaque fluids and 
non transparent pipes. 

There are three main ultrasonic techniques to measure two-phase flow parameters: Doppler, transmission and 
pulse-echo. According to Masala et al (2005) the ultrasonic Doppler technique has relative advantage when applied in 
low void fraction liquid velocity measurement and gas bubble velocity measurement. 

Chang et al (1983) used the ultrasonic transmission technique in a vertical bubbly flow. Emitting and receiving 
ultrasonic transducers are separated by the two-phase flow. Numerical modeling of the experiment was conducted by 
using Monte Carlo simulations and equivalent bubble method which consider bubbles with a perfect spherical shape 
and distributed uniformly along the column. The methods had good agreement for void fraction up to 20%. Faccini et al 
(2004) presented a hybrid ultrasonic technique formed by a contra-propagating transmission ultrasonic flow-meter, 
pulse-echo transmission ultrasonic voidmeter and a FieldBus data acquisition system. This technique was used to 
determine the stratified and plug flow pattern in a horizontal air-water two-phase flow. Chang et al (1990) used the 
ultrasonic pulse-echo technique in bubble air-water column and transmission technique in horizontal air-water flow. 
The void fraction was measured by means of ultrasonic attenuation using the ultrasonic transmission technique and 
Monte Carlo simulation. Using a polynomial regression method, it was possible to determine the stratified and 
intermittent flow patterns. Crivelaro-Seleghim (2002) used an invasive ultrasonic technique which provided input data 
from ultrasonic signals to artificial neural network (ANN) to diagnose two-phase flow regimes in a horizontal pipe 
obtaining good agreement.  

The use of neural network applied to the volumetric fraction measurement with ultrasonic waves in spite of 
seeming to be promising is still incipient. In the present work the pulse-echo ultrasonic technique was applied to a 
vertical air-water Plexiglas bubbly column and it was studied the average volumetric fraction. Then, the frequency 
spectrum of the ultrasonic signal was used as input to an ANN for air flow prediction. For the characterization of 
bubbles a photographic technique was used. 
 
2. EXPERIMENTAL SETUP AND METHODOLOGY 

 
The experimental development was carried out in the ultrasound laboratory of Centro Federal de Educação 

Tecnológica of Rio de Janeiro. The device consists of a vertical transparent Plexiglas column with 700 mm long and a 
rectangular cross section (50 x 80 mm), as shown in figure 1. The bubble feed system was constituted by a set of four 
stainless steel calibrated orifices, fixed at the intermediate base seat. The orifice set consists of 0.45 mm inner 
diameters. In the present work, these calibrated orifices sets will be referred as orifice 045.  

 

 
Figure 1. Bubbly column and ultrasonic system. 

 
The ultrasonic system was constituted of a Physical Acoustic Corporation model DS345 – 30 MHz pulser and 

receiver board, a Hewlett Packard model 54616B digital oscilloscope (500 MHz) and a NDT Systems Inc piezoelectric 
transducer (6.35 mm (¼”) diameter, 5 MHz).  

The liquid surface level in the column is a function of air volume within it. Thus the volumetric fraction was 
obtained by the relation between the increment of the volume in the column, to each air flow rate, and the new total 
volume. Table 1 presents the measured volumetric fraction for the five air flow rates. 
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Table 1 – Volumetric fraction to each correspondent air flow. 
 

Volumetric fraction (%) Orifice   
Air flow (l/min) 

      0.4                          0.5                          0.6                          0.7                          0.8 
 045 0.645 0.759 0.891 1.038 1.218 

 
The number of bubbles, their mean diameter and other parameters, in each volumetric fraction were obtained by 

using a photographic technique (digital camera and the Image-pro Plus software). Fig. 2 shows typical images obtained 
by the photographic technique. Five volumetric fractions were studied. 

The neural network uses the signals corresponding to the reflected ultrasonic wave from the opposite wall of the 
column and this one was treated in the frequency domain. These reflected ultrasonic signals are influenced by the 
distribution, diameter and density of the ascending bubbles in the flow.  

Using the photographic technique, it was observed that the bubbles did not present spherical shape but an elliptical 
profile which turns accentuated in proportion as the air flow increases. By means of measurement of the main axes of 
the bubbles, calculations were made to obtain geometric parameters as they are described in Table 2 and presented in 
Table 3.  
 

Table 2. Summary of data disposition presented on table 3 
 

 
Number of bubbles                  Relation d/d1 = r 

 
Average spherical diameter (mm) – desf 

 
 

Where: 
 

• The number of bubbles represents the total quantity of bubbles obtained in the 10 photos. 
• The relation d/d1 represents the relation (r) between the arithmetic average of the smallest axes and the arithmetic 

average of the biggest axes of the bubbles  
• The average spherical diameter (desf) was calculated from the average of the smallest axes (d) and from the average 

of the biggest axes (d1) of the bubbles, through the equality of the formula of the area of the transversal section of a 
circular profile sphere with another of an elliptical profile, Eq. (1).  
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TABLE 3 – Parameters of air bubble dispersed in the vertical column for volumetric fractions 

 
     Orifice 
 

Volumetric fraction (%) 
          0.645  0.759   0.891     1.038      1.218 

 
045 

421      r = 0.741 
desf = 2.673 

449      r = 0.718 
desf =  2.797 

472      r = 0.719 
desf =  2.776 

708     r =  0.743 
desf =  2.647 

919      r = 0.762 
desf =  2.571 

 
Analyzing the bubbles in different volumetric fractions, it was verified that the bubbles show small size, they are 

distributed, most of the path, uniformly, presenting high density along the longitudinal section of the column. Upon 
analyzing table 3, it can be verified, too, that between the minimum and the maximum volumetric fraction (0.645 to 
01.218 %) happened great variation of the number of the bubbles (184%) and in bubble density (117%). Figure 2 shows 
the photos of the bubbles within the column at different volumetric fractions. 

 
3. VOLUMETRIC FRACTION PREDICTION BY NEURAL NETWORK  

 
This session describes the ANN developed in this work. The ANN takes discrete frequency spectra of ultrasonic 

signals as inputs and outputs volumetric fraction values. 
Figure 3(a) shows 10 frequency spectra obtained for a volumetric fraction of 0.645%. Note that such spectra present 

well-defined shape, which clearly characterizes the volumetric fraction. Figure 3(b) shows that increasing volumetric 
fraction the values of the maximum amplitude of the frequency spectra declines lineally. 
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(a)_ 

 
(b) 

 

 
(c) 

 
(d) 

 

   
(e) 

 
Figure 2. Image of the bubbles within bubbly column according to the volumetric fraction: 

(a) 0.645%; (b) 0.759%; (c) 0.891%;  (d) 1.038% and (e) 1.218% 
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Figure 3 – (a) frequency spectra for volumetric fraction of 0.645%, (b) variation of the maximum amplitude of 
frequency spectrum as function of the volumetric fraction 
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Figure 4 – ANN topology 
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Figure 5 – ANN design and training methodology 

 
Artificial Neural Networks (ANNs) are mathematical models inspired in the human brain and its biological neural 

networks. The main feature of an ANN is the ability of learning from examples. Prediction, pattern classification and 
clustering are important capabilities of an ANN. 

Basically, an ANN works in two phases: i) training and ii) operation. In the training phase, the ANN is supposed to 
learn from examples, called training patterns. Generally a database of training patterns is previously defined. In the 
operation phase, the trained ANN executes the task it has been trained for. 

There are many types of ANN, which combine different topologies and learning algorithms. In this work, a typical 
MLP ( Multi Layer Perceptron) with backpropagation learning algorithm has been used. The ANN developed in this 
work presents 37 neurons in the input layer, which receives the spectra discretized into 37 points, 38 in the hidden layer 
and 1 neuron in the output layer, which outputs the volume fraction. Figure 4 shows the ANN topology. 

A database of 10 spectra (discretized into 37 points) for each one of the 5 different volume fractions has been 
generated. From a total of 50 patterns, 25 have been used for training, 15 for testing generalization and stop criteria 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 
(during the training phase) and 10 for validation of the trained ANN (simulating the operating phase). The methodology 
used for designing and training the ANN is illustrated in Figure 5. 
 
5. RESULTS 
 

Using examples of all different volumetric fractions in the training set, the ANN was able to predict the volumetric 
fraction values with maximum relative error of 1.51%. Table 4 shows the errors obtained. 
 

Table 4: Errors obtained using all different volumetric fractions from training set. 
 
 
 
 
 
 
 
 
 
 
 

Aiming to verify the generalization ability of the proposed ANN, all patterns related to 0,645 volumetric fractions 
have been excluded from the training set and used only for validation of the trained ANN. Results of this test are shown 
in tables 5 and 6. 

 
Table 5: Errors obtained excluding 0,891% volume fraction from training set. 

 
Volumetric fraction Average error Relative average error (%) 

0,645 0,007 1,12 
0,759 0,020 2,65 
0,891 0,053 5,93 
1,038 0,024 1,70 
1,218 0,013 1,04 

 
 
 
 

Table5: Errors obtained for 10 individual characterizations for the 0,891 % volume fraction. 
 

Reference value ANN prediction Error 
Relative 

Error(%) 
0,891 0,841 0,050 5,61 
0,891 0,810 0,081 9,09 
0,891 0,852 0,039 4,38 
0,891 0,844 0,047 5,27 
0,891 0,807 0,084 9,43 
0,891 0,865 0,026 2,92 
0,891 0,838 0,053 5,95 
0,891 0,831 0,060 6,73 
0,891 0,837 0,054 6,06 
0,891 0,859 0,032 3,59 

 
As expected, average errors have increased due to the exclusion of information from training set. It was 

observed that errors related to 0.891 volume fractions predictions were responsible for this fact. However, considering 
that such patterns unknown by the ANN, errors above 10% means a good generalization capability. 

 
 

Volumetric fraction Average error Relative average error (%) 
0,645 0,002 0,33 
0,759 0,011 1,51 
0,891 0,009 0,96 
1,038 0,013 0,95 
1,218 0,007 0,59 
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6. CONCLUSIONS  
In this work a new methodology based on the use of artificial neural networks has been proposed to predict 

volumetric fraction in a vertical bubbly column. The shape and quantity of the bubbles varied to each different 
volumetric fraction. The artificial neural network technique shows to be sensitive to the variation of the volumetric 
fraction. A MLP ANN has been designed and trained in order to correlate the frequency spectrum of ultrasonic signals 
(ANN inputs) to the respective volume fractions (ANN outputs). Using a training set of 25 patterns (+ 15 test set 
patterns), the ANN achieved maximum error above 6% and maximum error above 10% in volume fractions prediction, 
demonstrating to be a promising tool for two-phase flows characterization. The results show the possibility of using just 
one transducer applying the signals of the ultrasonic pulse-echo technique to evaluate with good precision the 
volumetric fraction studied in this work. 
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