
Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

OPTIMIZATION OF PUMP-TURBINE USING SEQUENTIAL QUADRATIC 
PROGRAMMING AND GENETIC ALGORITHMS 

 
Marcos Antonio Rodrigues dos Santos, ars.marcos@unifei.edu.br
Nelson Manzanares Filho, nelson@unifei.edu.br
Waldir de Oliveira, waldir@unifei.edu.br
Universidade Federal de Itajubá, Av. BPS 1303, C. P. 50, CEP 37500-903, Itajubá, MG, Brasil  
 
Abstract. This work presents a computational low cost methodology useful to optimize design of radial pump-turbine. 
The methodology is based on one-dimensional flow modeling, empiric correlations for energy losses determination and 
local (SQP) and global (GA and NSGA-II) techniques of optimization. This methodology has the task to search basic 
geometries that maximize the value of the efficiency for the turbine operating mode as well as for pump operating 
mode. Due to the small number of design variables (runner blades inlet and outlet angles, wicket gates stagger angle 
and inlet and outlet stay vanes angles) it was first accomplished an optimization based on mono-objective used to 
maximize the turbine and pump efficiency but each one at a time. After that a more elaborated multi-objective 
optimization took place. As an example of application of the developed methodology and tools it is presented and 
analyzed a radial pump-turbine of specific speed of 30. Such pump-turbine has been previously tested in a laboratory. 
The results are comparable with the original design of the pump-turbine. 
 
Keywords: Turbomachinery, pump-turbine, mean streamline analysis, energy losses, optimization, sequential 
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1. INTRODUCTION  
 

The optimized design of a hydraulic turbomachinery is necessary in order to minimize the hydraulic losses of each 
hydromechanics component. Due to the complexity of the flow into the turbomachinery, which is also aggravated by a 
complex geometry, it turns very difficult to go through a complete calculation. The technique for Fluids Dynamic 
Computation (CFD) has been used mainly for the flow interaction between some of the main components of a 
conventional pump, Bert et al. (1996), as well as a conventional turbine, Nakamura and Kurosawa (2006).  These 
techniques have also been employed in reversible pump-turbine for the flow interaction calculation with the guide vane 
and stay vane when the turbomachinery operates as a pump, Ciocan et al. (1996), and, between the runner and draft 
tube, when it operates as a turbine, Kirschner et al. (2007). Even when the turbomachinery geometry is not completely 
defined a methodology is essential for the start of the conceptual design optimization. 

This work presents a low computational cost methodology for the optimization of the basic design of a reversible 
pump-turbine in the design operation point. Such methodology is based on the one-dimensional flow and makes use of 
several empiric correlations. In a step further the design optimized algorithm including solver and optimization method 
was implemented in a computational program written in Matlab™. For a given flow, speed, some pre-defined geometric 
variables and imposed constraints this program searches for basic geometry that allows for the pump-turbine total 
maximum efficiency operating at both modes. Two optimization methods are used: 1) Local Search Method (mono and 
multi-objective) by Sequential Quadratic Programming (SQP) and 2) Global Search Method (mono and multi-objective) 
using Genetic Algorithm (GA) and NSGA-II (multi-objective). This work is structured in the following way: At first it 
is presented the optimization problem definition and then a brief summary of the optimization techniques. After that it is 
presented a methodology to get the turbine and pump solver. The last part deals with the results analysis and the 
conclusions.       
 
2. THE OPTIMIZATION PROBLEM 
 

In the engineering world practical problems are often conflicting. Sometimes more than one objective function has 
to be simultaneously either minimized or maximized. Problems of that nature are treated as multi-objective optimization 
also named multi-criteria. The reversible pump-turbine optimization problem brought in this work is solved by the 
maximization of the total efficiency in both operating modes, either as turbine or as a pump. To solve this problem is 
appropriate to use the following formulation, Eq. (1). 

 
inf sup

1 1 2 2Minimize    ( ) = ( ) ( ), subject to ( ) 0, 1, , , 1, ,+ ≤ = ≤ ≤…j i i if w f w f g j m x x x ix x x x = … n  (1) 
 
The functions 1 T( ) ( )= −f ηx x  and 2 B( ) ( )= −f ηx x  represent the reversible pump-turbine total efficiency in both 

operating modes. The minimization of T ( )−η x  and B ( )−η x  clearly result in the maximization of T ( )η x  and B ( )η x . 
The net head, TH , and the effective head, BH , respectively given for both operating modes and resulted from the 
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geometry optimization process must remain between upper and lower bonds previously set. This also applies to the 
hydraulic efficiency Thη  and Bhη . These variables together establish the non-linear constraint ( ), 1, , .= …jg jx m  of the 
problem. For the definition of the design space variables (viable region or search region, S) it is used side constraints 
applied to the design variables. Given some geometric variables and the reversible pump-turbine flow-speed pair of 
values the search for the optimum design variables begins. They are the runner blades inlet and outlet angles, wicket 
gates stagger angle and inlet and outlet stay vanes angles. 

With the n-dimensional vector x for the decision variables (design variables), T
1 2[ , , , ]= … nx x xx , the region S is 

defined by the upper and lower bonds, inf supandj jx x , { }inf sup , 1, ,= ∈ℜ ≤ ≤ = …n
i i iS x x x ix  : n , which restricts each decision 

variable of x. The Solver is based in the Sequential Quadratic Programming (SQP) through the function code fmincon 
of the MATLAB®. It is then intended to find the solution vector ∗x  of the problem (optimum solution). The solution 
given by the method based on the gradient is considered an optimum local solution which can be also a global solution 
depending on the optimization starting point. It is recommended to use more than one optimization technique to check 
the convergence of the results, Arora (2004). To overcome the problems faced by the SQP, it is used in this work two 
population methods. The establishment of the constraints is formulated using quadratic penalization method. This 
explains how the objective function is penalized. The population method is given by the respective function ga and 
gamultiobj, of the MATLAB®. The first function referrers to the standard Genetic Algorithm (GA) as long the 
second function refers to the NSGA-II algorithm, as described by Deb (2001). 
 
3. OPTIMIZATION METHODS 
  

In the context of the restricted optimization the main idea of the SQP is to obtain a search direction, solving a 
quadratic programming (QP) sub-problem at each iteration. This means to get a search direction solving a quadratic 
sub-problem with quadratic objective function and linear constraints. This is anything else than the idea behind the 
quasi-Newton methods for the unrestricted minimization, Antoniou and Lu (2007). In other words it can be said that an 
optimization problem with constraint is converted into another sub-problem further simpler. Thus it can be solved with 
an interactive process without constraint. For the SQP implementation one has to follow three main steps: 1) Hessian 
matrix actualization; 2) Solve the quadratic problem and new search direction and 3) Merit function. In the Fig. 1 (a) it 
is shown the optimization process flowchart for the SQP. 

The Genetic Algorithm is a stochastic method that allows a parallel search mechanism. It is also adaptive because it 
is based on the natural selection theory where an organism is more likely to survive long enough to reproduce according 
to its aptitude, Fonseca and Fleming (1993). There are many others variety of the Genetic Algorithms with no rigorous 
definition, e.g., some GA can differ as their individuals are moving towards the next generation.  As any other evolution 
algorithm the fundamental idea of the GA rests over 5 main components according to Michalewicz (1996): 1) Genetic 
representation for potential solution of the problem giving codes for a set of parameters; 2) Creation of the initial 
population; 3) Evaluation of the objective function by fitness assignment; 4) Genetic operators application during 
reproduction; 5) Values attribution for the genetic parameters like size of population, operators application probability, 
etc. In the Fig. 1 (b) it is shown the flowchart for the design optimization using GA. In a simple step the Pareto-front is 
got with the NSGA-II. This is an algorithm pure elitist in the sense that only the parents and childs which belong to the 
set of non-dominated individuals are involved in the crossover process and selection. In the Fig. 2 it is shown briefly the 
mechanism of the NSGA-II, Deb (2001). 
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Figure 1. Optimization flowchart for the SQP and GA. 
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For the case of a general minimization problem there are sets of inferior, superior and non-inferior solutions. A 
solution vector  is said an inferior solution relative to the solution vector , if v is partially 
less than u, . It means that at least one classified individual exist in v which is 
less than any other individual in u. Following that idea a vector  is said a superior solution relative to 

 if all v is inferior relative to u. Finally the solution  and are said non-
inferiors one relative to the other (Pareto’s optimum) if v is nor inferior neither superior relative to u, Fonseca e Fleming 
(1993). Since the first multi-objective technique “Vector Evaluated Genetic Algorithm” a great number of publications 
about evolutionary algorithm has been represented through of the years. Aiming to solve the engineering problems the 
Genetic Algorithms have been also suffered important contribution and advancement by all areas. The main aspects and 
differences of the many types of Evolution Algorithm can be found in the works of Coello (1999) and Konak et al. 
(2006). The format of the viable and unviable regions of the Pareto-optimal set depends on the optimization problem, 
given constraints and established limits for the design variables. Depending on the optimization problem the Pareto-
front can have a format of difficult identification. Li and Zhang (2009) presented several multi-objective problems with 
continuum functions with Pareto-front of difficult identification. They analyze the approximation of evolution algorithm 
to get the referred Pareto-front. 

1( , , )… nu uu= 1( , , )… nv vv =
1, , , e =1, , :∀ = ≤ ∃ <… …i i ii n v u i n v ui

1 n( , , )…u uu=

1 n( , , )…v vv = 1( , , )… nu uu= 1 n( , , )…v vv =
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Figure 2. Schematic of the NSGA-II procedure. 
 
 

4. METHODOLOGY TO OBTAIN PUMP AND TURBINE SOLVERS 
  

To obtain the theoretical hydrodynamic characteristics for the pump and turbine operating modes is necessary to 
perform separate flow analysis for each hydromechanics component. To begin with this analysis the flow parameters in 
the exit of one component are calculated taking into consideration its geometry and given parameters of the entrance 
flow. Therefore the discharge in the exit of one component is used as the entry data for the discharge in the next 
component and so forth. One should take into consideration when applying this methodology that the runner or impeller 
discharge QRT or QRB, is different from the turbine or pump discharge QT or QB. These discharges are tied by the 
efficiency losses ηfT or ηfB, which also depend on the runner flow characteristic. The Fig. 3 is used to show the main 
hydromechanics pump-turbine components but does not have the spiral case and the draft tube but both are included in 
this methodology. The symbols represented in the Fig. 3 (a) calls for the turbine mode and in the Fig. 3 (b) for the pump 
mode. The Fig. 3 (c) is intended to show the meridian view of the same components of the pump-turbine. The Tab. 1 
contains the main dimensions of the hydromechanics components of the pump-turbine. The operating parameters for the 
best operation point for the turbine as well as for the pump are: QT = 0.454 (m3/s), nT = 1000 (rpm) and HT = 60.0 (m) 
for the turbine mode and QB = 0.335 (m3/s), nB = 1000 (rpm) and HB = 51.4 (m) for the pump mode.  

 
4.1. Hydraulic losses 

 
No emphasis will be given such as to help to understand the origin of the several different types of losses. In the 

works of Denton (1993) and Lakshminarayana (1996) are available the physical description of the mechanisms for 
several losses. The losses are defined by the increase in entropy.  Coefficients are used to express them in terms of 
average variables. 

For the spiral case in turbine mode the following losses are calculated: viscous friction in the reduction (section in 
the entrance of spiral case) and in the spiral case, losses due to bending of spiral case. For the pump mode besides the 
previous losses it is added the shock loss in the spiral case. For the guide vane, stay vane and runner in both operating 
modes it is calculated the following losses: shock loss, losses due to viscous friction and mixture losses. For the draft 
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tube in turbine mode it is calculated the following losses: losses due to vortex in the cone, losses due to viscous friction 
in the cone, in the elbow and in the exit section, losses due to bending of the elbow and losses in the exit of draft tube. 
Still considering the draft tube in pump mode it is calculated the following losses: losses due to viscous friction in the 
reduction (end section), in the elbow and in the reduction (end section) and losses due to the bending of the elbow. 
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Figure 3. Transversal sections of the runner, guide and stay vanes, (a) Turbine mode and (b) Pump mode, 
showing the main geometric parameters and (c) Meridional section. 

 
 

Table 1. Main geometric parameters of the pump-turbine. 
 

Runner Symbol Value Unit Pre-distributor Symbol Value Unit 
Inlet diameter D4 618.4 mm Inlet diameter D1P 1038 mm 

Outlet diameter D5 265 mm Outlet diameter D2P 829 mm 
Inlet height b4 51 mm Inlet height b1P 51 mm 

Outlet height b5 135 mm Outlet height b2P 51 mm 
Surface roughness εR 4 µm Surface roughness εP 6.3 µm 
Number of vanes NR 6 - Number of stay vanes NP 20 - 

Distributor Symbol Value Unit Spiral case Symbol Value Unit 
Primitive diameter DpD 733 mm Inlet diameter D1C 740 mm 

Inlet diameter D1D Variable mm Diameter at 180o D2C 350 mm 
Outlet diameter D2D Variable mm Surface roughness εC 6,3 µm 

Inlet height b1D 51 mm Draft tube Symbol Value Unit 
Outlet height b2D 51 mm Inlet diameter D7 291 mm 

Surface roughness εD 6.3 µm Outlet diameter D8 540 mm 
Number of wicket gates ND 20 - Surface roughness εT 6.3 µm 

 
 

The losses due to viscous friction for several components previously mentioned are calculated by Eq. (2), 
 

2

2
ref

av
h

VLZ = f
D g

 (2) 

 
where f is the friction coefficient calculated by the Swamee and Jain (1976) formula, L the length characteristic, Dh the 
hydraulic diameter, Vref  the reference speed and g the gravitational acceleration.  

The bending losses calculated by Ueda et al. (1980) is given by the Eq. (3), 
 

2

2
cur

cur cur
c

Z = K
g

 (3) 

 
where Kcur is a loss coefficient due to the bending and ccur  the circumferential component of the absolute flow speed.  

The shock loss for the spiral case, Ida and Kubota (1980), is given by Eq. (4), 
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where is the shock loss coefficient,  e , respectively, the meridional and circumferential of average 
absolute speed in the exit of guide vane and  cc  the average absolute speed in the spiral case flow. The shock loss for 
the guide vane, stay vane and runner, Ueda et al. (1980), are given respectively by Eqs. (5), (6) e (7), 
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where chζ  is the shock loss, 1α  e *
1α  the inlet angles, respectively, of the absolute flow and vanes, 4β  e  the inlet 

angles, respectively, of the relative flow and blades,  the meridional component of the absolute speed in the 
entrance, and  the relative meridional component in the entrance.  

*
4β

1mc

4mw
The mixture losses for the guide vanes and stay vanes, Ueda et al. (1980), is given by Eq. (8), 

 
2 2

2 2
*

2 2 2sin
⎡ ⎤
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⎣ ⎦

al
mw mw

e N c
Z

gD
ζ

π α
 (8) 

 

where mwζ  is the coefficient of the mixture losses for the guide vanes and for the stay vanes, , , 2e 2D *
2α  e , 

respectively, the thickness, diameter, angle and the absolute discharge average speed in the exit of the stay vanes or of 
the guide vanes, and  the number of stay vanes or number of guide vanes. 

2c

alN
Using the same procedure the mixture losses for the runner, Ueda et al. (1980), is given by Eq. (9), 
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where  
Rmwζ  is the coefficient of mixture losses for the runner, , ,  and , respectively, the thickness, 

diameter, angle and average relative speed in the exit of the blade, and  the number of blades. 
5e 5D *

5β 6w

páN
The losses due to vortex which appears in the entrance of the cone of the draft tube comes from the absolute 

discharge in the exit of the runner when this flow does not have a circumferential component of the absolute speed, , 
different from zero. According to Ueda et al. (1980) these losses can be approximated by Eq. (10), 

6uc

 
2

5 5 6 6

2
= m u

tur tur
D b c c

Z
Q g

π
ζ  (10) 

 
where turζ  is the vortex coefficient, b5 and cm6, respectively, the width and meridional component of the absolute speed 
in the exit of the runner.  

The losses in the exit of the draft tube are localized losses which depend on the localized losses coefficient, K , 
assuming this equal to 1, and from the average speed in the discharge exit on the draft tube, . 8c

 
4.2. Leakage flow 
 

The leakage flow represented by the volumetric discharge, fQ , is calculated by  (turbine mode) or 
 (pump mode). The leakage flow is obtained by 

T= −fQ Q QR

Bf R= −Q Q Q = +f fe fiQ Q Q , where feQ  is the external leakage flow 
and fiQ  the internal leakage flow. According to Vivier (1966), the leakage flow, discharge feQ  or fiQ  can be calculated 
by Eq. (11), 
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2∆f L LQ = µ A p /ρ  (11) 
 

where µ  the empiric coefficient, Vivier (1966),  which depends on the seal clearance geometry, LA  the discharge 
section through the seal clearance geometry,  is the static pressure difference between the entrance and the exit of 
the seal clearance geometry and ρ the water specific mass. 

∆ Lp

 
4.3. Losses due to side friction 

 
The losses of power due to side friction , Pal, is calculated according to Gülich (2003), Eq. (12), 
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al i
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P = ρω r 1-
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where δ is the bottom cover inclination angle related to radial direction, ω is the runner angular speed, r is the runner 
larger radius (r4 for turbine and r5 for pump) and ri is the seal average radius. The expression for the factor  
determination is done according to Gülich (2003), which embraces not only the four flow modes in the side spaces (2 
laminar e 2 turbulent) as well as the leakage flow, which is given by Eq. (13). 

alk
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* 0,2
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k
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where *
as  is the relation between side space clearance and the runner radius, Re is the Reynolds number, ko is the 

spinning factor of the fluid in the side space with the null leakage flow discharge, Rkε  and , respectively, the factor 
that embraces the involved surfaces roughness and the leakage flow effect. 

fk

 
4.4. Turbine Solver 
 

The following methodology has been developed for the determination of the turbine solver: 1) Entry data: Geometry 
values, the discharge and speed pair of point (QT, nT) the hydraulic losses coefficients; 2) Preliminary calculation: 
discharge sections, narrow down section factors, step and variation calculation of the inlet and outlet diameters for the 
guide vane; 3) Calculation of the speed in the spiral case, guide vane, stay vane and draft tube; 4) First calculation of the 
runner speed with the discharge QT; 5) Calculation of the friction coefficients; 6) Calculation of the hydraulic losses in 
the spiral case, guide vanes and stay vanes; 7) Start of the interactive cycle for the calculation of the turbine net head, 
HT; 8) Calculation of the hydraulic losses for the runner and draft tube; 9) Calculation of the leakage flow; 10) 
Calculation of the runner discharge ; 11) New calculation of the runner speeds; 12) Calculation of the new 
coefficient for the viscous friction for the runner; 13) Calculation of the new hydraulic losses for the runner and draft 
tube; 14) Calculation of the loss of power due to side friction; 15) Calculation of the hydrodynamics characteristics 
(head and efficiency); 16) Convergence criteria evaluation; 17) Calculation of runner real speeds; 18) Calculation of the 
new hydraulic losses in the runner and draft tube; 19) New calculus of the leakage flow; 20) New calculation of the loss 
of power due to side friction; 21) Final results of the hydrodynamics characteristics (ηT).  

TRQ

 
4.4. Pump Solver 
 

Similar to the turbine solver it was developed a methodology for the pump solver. 1) Entry data: Geometry values, 
the discharge and speed pair of point (QB, nB) the hydraulic losses coefficients; 2) Preliminary calculation: discharge 
sections, narrow down section factors, step and variation calculation of the inlet and outlet diameters for the guide 
vane;3) Calculation of speeds for the draft tube; 4) Calculation of the runner speeds, guide vane, stay vane and spiral 
case; 5) Calculation of the friction coefficients; 6) Calculation of the hydraulic losses for the draft tube, guide vane, stay 
vane and spiral case; 7) Start of the interactive cycle for the calculation of pump net head, HB; 8) Calculation of the 
runner hydraulic losses; 9) Calculation of the leakage flow; 10) Calculation of the runner discharge ; 11) New 
calculation of the runner speeds; 12) New runner friction coefficients, guide vane, stay vane and spiral case; 13) 
Calculation of the new runner hydraulic losses and spiral case; 14) Calculation of the loss of power due to side friction; 
15) Calculation of the hydrodynamics characteristics (head and efficiency); 16) Convergence criteria evaluation; 17) 
Calculation of runner real speeds; 18) Calculation of the new runner hydraulic losses; 19) New calculus of the leakage 
flow; 20) New calculation of the loss of power due to side friction; 21) Final results of the hydrodynamics 
characteristics (ηB).  

BRQ
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The non-guided flow (space between the stay vane and guide vane, and also, the space between guide vane and 
runner) were modeled according to the following: 1) potential vortex, 2) viscous model according to Whitfield and 
Baines (1990) and 3) adjusted free-vortex according to Pfleiderer and Petermann (1979). These three models represent a 
difference lower than 2.35% for the flow speeds. For this work the Whitfield e Baines model was the one chosen. 

 
5. RESULTS 
 

The following intervals for the design variables were established: 20.45° ≤ ≤ 35.00°, 21.75° ≤ 
45°, 22.68° ≤ ≤ 50.00°, 18.60° ≤

T1P 2Pα = α
B

B

T B2P 1Pα = α

MDα
T4R 5R=β β ≤ 40.00° and 14.90° ≤

T5R 4RB
=β β ≤ 35.00°. For the head and hydraulic 

efficiency it was set the following intervals: 59.35 m ≤ TH ≤ 60.85 m, 89.50 % ≤
T

ηh ≤ 92.89 %, 50.50 m ≤ BH ≤ 51.88 m 
and 88.78 % ≤

B
ηh ≤ 92.05 %.  

For the mono-objective optimization it was initially analyzed the variation of the start point, xo, using the SQP to 
turbine and pump operating mode. After some tests it was chosen three possible solutions for both operating modes. 
The optimality conditions were guaranteed by the tolerances in the directional derivative in the objective function and 
also for the constraints. Among all possible solutions for the turbine operating mode it was chosen the design optimum 
SQP-2 (which converged after 34 evaluations of the objective function) and SQP-3 (which converged after 27 
evaluations of the objective function) for the pump operating mode, as shown in Tab. 2 (three solutions for different 
methods). 

Using GA it was initially studied the variation of the crossover factor and the variation of the penalty factor for both 
operating modes. In both operating modes it was used the penalty factor of 300 being that the value used for all 
penalties. For the turbine operating mode it was used the following parameters: generation number, 60; population size, 
20; crossover factor, 0.750; selection, roulette method; and crossover, in two points. For the pump operating mode: 
generation number, 60; population size, 20; crossover factor, 0.675; selection, roulette method; and crossover, in two 
points. For both operating modes, the optimizer was called 50 times. Among feasible solutions it was chosen 3 designs 
for comparison. From those results it was chosen the optimum possible. For the turbine operating mode it was chosen 
the solution GA-3. For the pump operating mode it was chosen the solution GA-1, as shown in Tab. 2. The stopping of 
the algorithm was done by the generation limit and after 1200 evaluation of the objective function. 

 
Table 2. Optimum value of the design variables for the mono-objective optimization. 

 Turbine mode  Pump mode 

 
T1Pα (º) 

T2Pα (º) MDα (º) 
T4Rβ (º)

T5Rβ (º) SQP-1
B2Pα (º) MDα (º) 

B4Rβ (º) 
B5Rβ (º)

SQP-1 19.31 29.02 35.65 25.00 16.62 SQP-2 21.78 37.60 16.42 22.08 
SQP-2 20.01 26.00 35.72 20.80 16.63 SQP-3 26.09 37.02 18.79 22.20 
SQP-3 25.03 30.02 36.30 32.00 15.33 GA-1 20.45 37.06 17.67 21.10 
GA-1 20.82 23.76 35.68 18.00 16.61 GA-2 20.32 29.91 16.32 20.99 
GA-2 21.51 23.74 35.71 19.28 16.62 GA-3 20.28 35.50 19.19 21.00 
GA-3 21.34 23.21 35.64 21.20 16.61 24.00 23.29 36.00 19.54 21.00 

 
For the multi-objective optimization it was adopted an optimizing procedure similar to the mono-objective 

optimization function in the analysis of the start point using the SQP and the crossover factor using the GA and the 
NSGA-II. For the weight variation in the Eq. (1) it was adopted the values W1T = 0.01 (turbine) and W1B = 0.95 (pump) 
for the first pair of weights, W2T = 0.05 and W2B = 0.95 for the second pair of weights. From that pair of weights the 
increment (turbine) and the decrement (pump) was 0.05 resulting in a total of 20 pairs of weights. Again, for the use of 
SQP, it was chosen 3 values for the start point as possible solutions. 

For a given start point, the SQP kept practically over the same solution (premature convergence, as shown by 
Obayashi et al. (2004)) even with variation in the weights. For the GA it was analyzed the crossover factor 0.600 e 
0.750 and for the pair of weights the optimizer was called 3 times giving a total of 60 individuals for each factor. The 
Fig. 4 refers to the solution using the SQP and the GA presenting only the feasible solutions with the following 
parameters: generation number, 80; population size, 30; crossover factor, 0.600 (GA-1) and 0.750 (GA-2). 

The inherent limitation for the use of SQP is its premature convergence in local minimums as presented by Obayashi 
et al. (2004). Besides the summation using weights may not represent very well the Pareto-front, Coello (1999). For the 
NSGA-II the following parameter as given: population size, 60; crossover factor (CF), 0.650, 0.750 and 0.850; 
selection, tournament method; and crossover, in two points. For each crossover factor the optimizer was called 50 times 
and from them 3 Pareto-fronts denominated NSGA-II (1), for CF = 0.650, were chosen got for 141 generations and  
8521 objective function evaluation,  NSGA-II (2), for CF = 0.750, got for 126 generations and 7621 objective function 
evaluation and finally NSGA-II (3), for CF = 0.850, got for 108 generations and 6541 objective-function evaluation, 
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according to the Figs. (5), (6a) and (6b) respectively. The choice of the optimum individuals was given by the higher 
efficiency for the turbine and pump operating modes. The Tab. 3 shows the design variables for the SQP and GA. The 
Tab. 4 shows the design variables for the NSGA-II. 
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Figure 4. Multi-objective optimization using (a) SQP and (b) GA. 

 
Table 3. Optimum value of the design variables for the multi-objective optimization using SQP and GA. 

SQP 
B1Pα /  (º) 

T2Pα  /  (º)
B2Pα T1Pα MDα (º)

B4Rβ /
T5Rβ (º) 

B5Rβ /
T4Rβ (º) 

SQP-1 22.39 21.39 35.93 17.20 21.04 

SQP-2 21.75 21.58 36.29 16.10 20.68 

SQP-3 23.29 21.27 36.04 17.20 21.04 

GA 
B1Pα /  (º) 

T2Pα  /  (º)
B2Pα T1Pα MDα (º)

B4Rβ /
T5Rβ (º)

B5Rβ /
T4Rβ (º) 

GA-1 22.26 19.59 35.86 17.13 20.62 

GA-2 22.46 21.46 35.93 17.17 21.00 

 
Table 4. Optimum value of the design variables for the multi-objective optimization using NSGA-II. 

NSGA 
B1Pα /  (º) 

T2Pα B2Pα /  (º) 
T1Pα MDα (º)

B4Rβ /
T5Rβ (º)

B5Rβ /
T4Rβ (º) 

NSGA-II (1) 21.77 21.61 35.78 16.59 20.85 

NSGA-II (2) 27.93 26.08 36.01 16.82 20.55 

NSGA-II (3) 22.54 29.75 36.08 16.87 20.88 
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Figure 5. Pareto-front NSGA-II (1). 
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Figure 6. Pareto-front NSGA-II (2) and NSGA-II (3). 

 
Table 5. Experimental results and results obtained by mono-objective optimization. 

 
Experimental results  SQP-2 GA-3 SQP-3 GA-1 

Symbol  (Unit) Turbine Pump Symbol  (Unit) Turbine Turbine Pump Pump 
n  (rpm) 1000 1000 n  (rpm) 1000 1000 1000 1000 
Q  (m3/s) 0.454 0.335 Q  (m3/s) 0.454 0.454 0.335 0.335 
H  (m) 60.0 51.4 H  (m) 60.54 60.72 50.88 60.50 
η  (%) 88.06 86.84 η   (%) 88.00 88.04 86.42 87.66 
ηh  (%) 92.43 91.21 ηh  (%) 92.79 92.83 92.05 92.66 
ηf  (%) 98.34 97.82 ηf  (%) 98.66 98.66 98.44 98.42 
ηm  (%) 96.88 97.34 ηal  (%) 97.58 97.57 96.82 96.88 
Pe  (kW) 235.24 194.45 ηm  (%) 98.50 98.50 98.50 98.50 

N11  (rpm m0.5) 80.04 86.26 Pe  (kW) 237.19 238.09 193.43 236.68 
P11  (W m-3.5) 1323.55 1379.83 N11  (rpm m0.5) 79.47 79.36 86.70 79.51 

Q11  (m3/s m-2.5) 0.1533 0.1222 P11  (W m-3.5) 1316.70 1315.40 1393.7 1315.20 
 Q11  (m3/s m-2.5) 0.1526 0.1524 0.1228 0.1526 

 
Table 6. Results obtained by multi-objective optimization.  

 
 SQP-1 SQP-1 GA-1 GA-1 GA-2 GA-2 NSGA-II (1) 

Symbol  (Unit) Turbine Pump Turbine Pump Turbine Pump Turbine Pump 
n  (rpm) 1000 1000 1000 1000 1000 1000 1000 1000 
Q  (m3/s) 0.454 0.335 0.454 0.335 0.454 0.335 0.454 0.335 
H  (m) 60.85 51.88 59.71 51.44 59.50 51.83 60.20 51.16 
η   (%) 88.11 86.46 87.99 86.41 87.80 86.45 88.07 86.52 
ηh  (%) 92.89 92.05 92.81 92.02 92.63 92.05 92.88 92.05 
ηf  (%) 98.66 98.42 98.67 98.43 98.67 98.42 98.66 98.50 
ηal  (%) 97.60 96.88 97.55 96.86 97.53 96.88 97.57 96.88 
ηm  (%) 98.50 98.50 98.50 98.50 98.50 98.50 98.50 98.50 
Pe  (kW) 238.68 197.12 233.91 195.56 232.59 196.95 236.05 194.26 

N11  (rpm m0.5) 79.27 85.85 80.03 86.22 80.17 85.90 79.70 86.46 
P11  (W m-3.5) 1314.90 1379.40 1325.70 1386.10 1325.20 1380.20 1321.50 1388.20 

Q11  (m3/s m-2.5) 0.1522 0.1216 0.1536 0.1221 0.1539 0.1217 0.1530 0.1225 
 
 
6. CONCLUSIONS 
 

The methodology presented in this work has been developed to optimize reversible radial pump-turbine design. It 
was built over three main hypotheses: one-dimensional flow, empiric correlations for losses and optimization 
techniques based on gradient (SQP) and two population algorithm (GA e NSGA-II). It is a low computational cost 
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methodology and easy to implement. The algorithm was then implemented in a computational program, which had the 
task to search some basic geometry as the design variables. In a step ahead it maximizes the efficiency of the pump-
turbine for both operating modes of the reversible pump-turbine. These basic geometries are the runner blades inlet and 
outlet angles, wicket gates stagger angle and inlet and outlet stay vanes angles. The results obtained by this 
methodology are comparables with existing results from reduced scaled pump-turbine model. 

The mono-objective optimization was used to indicate a tendency for the design variables values for turbine mode 
and also for pump mode, but each one at a time. The best solution of the SQP in comparison with the GA solution were 
in agreement with the reduced scaled model of the pump-turbine and showed good approximation around the optimum 
global for both operating modes. 

The multi-objective optimization has also conducted to results with a tendency for the design variables values in 
comparison with existing pump-turbine design. All the results for the SQP presented a small variation. The best solution 
of the SQP compared with the best solution of the GA has also presented agreement with the reduced scaled model 
results. In a different way, theses results compared with the best solution of the NSGA-II indicated a good 
approximation around the optimum global. As solution of the problem of optimization conceptual for the radial pump-
turbine, the solution NSGA-II (1) is chosen because it has the lowest hydraulic loss among all solutions. 
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