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Abstract. The present work focuses on the theoretical study and the numerical simulations of two degrees-of-freedom 
nonlinear damped system, constituted of a primary mass attached to the ground by a linear spring and the secondary 
mass attached to the primary system by a nonlinear spring (nDVA). In this application, the numerical resolution of the 
nonlinear equations of motion is made by using two strategies: first, by using the modified Bessel functions, in which 
the nonlinear spring force is expand resulting in a set of differencial equations of motion more simply to be solved; the 
second is the use of the perturbation methods thourgh a Taylor series expansion of the nonlinear terms, resulting in a 
set of linear differential equations. The amplitudes of the harmonic responses of both strategies enables to determine 
the influence of the nonlinear parameters over the amplitudes of vibration and the suppression bandwith. Moreover, in 
many applications of nDVAs including design, the optimization procedures based on numerical models is a very useful 
tool. In this paper, the multiobjective optimization of the nDVA into a frequency band of interest is proposed, with the 
aim of augmenting the performance of the nonlinear absorber. The multiobjective optimization problem is composed 
by two objective functions: the first is related to the amplitude of vibration, with the aim of minimizing this amplitude; 
the second is associated to the suppression bandwidth, where the interest is to maximize this bandwidth. Based on the 
obtained results, the usefulness of the modeling methodologies in various types of analyses and design of discrete 
nDVAs is highlighted. 
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1. INTRODUCTION 

 
In its simplest form, DVAs are essentially discrete devices concentrating mass and stiffness that once connected to a 

given structure, are capable of absorbing the vibratory energy at the connection point, providing a reduction of the 
vibration level. Much of the knowledge available to date is compiled in the original patent by Frahm (1911), and in the 
books by Den Hartog (1934)  and Koronev and Reznikov (1993), and in some review papers such as those proposed by 
Steffen Jr. and Rade (2000, 2001). 

In the last two decades, a great deal of effort has been devoted to the development of mathematical models for 
characterizing the mechanical behavior of nDVAs accounting for its typical dependence on parameters that control the 
nonlinearities (Zhu, 1992). Besides the well-known complexity of the modeling strategy involved in nonlinear 
dynamics, which constitutes a simple and straightforward means of representing the dynamic behavior of nDVAs, some 
methodologies have been suggested and have been shown to be particularly suitable to be used in combination with 
structural systems discretization. This aspect makes them very attractive for the modeling of nonlinear dynamic 
vibration absorbers. Among these strategies, it should be mentioned the theoretical study proposed by Pipes (1953) and 
Pai and Schulz (1998), in which some techniques to improve the stability and efficiency of nDVAs into a frequency 
band of interest have been proposed, leading to refined nDVAs. Also, Rice and McCraith (1987) suggested optimization 
strategies to be applied to the design of nDVAs through the use of an asymmetric nonlinear Duffing-type element 
incorporated in the suspension for narrow-band absorption applications. 

The present work focuses on the theoretical study and the numerical resolutions of a two d.o.f’s nonlinear damped 
system. Within this context, two strategies are investigated: first, by using the modified Bessel functions. This strategy 
enables to expand the nonlinear spring forces resulting in a set of differential equations of motion, simplest to be solved; 
the second is the use of the perturbation methods, by a Taylor expansion series of the nonlinear terms, resulting in a set 
of linear differential equations, in which the solution of these system is an approximation of the real nonlinear system 
for the small amplitudes of vibration.  

In many applications of nDVAs including design, the optimization procedures based on numerical models is a very 
useful tool. In this paper, a multiobjective optimization strategy of a nDVA into a frequency band of interest is 
proposed, with the aim of augmenting the performance of the project of the nDVA. For that, the deterministic 
multiobjective optimization problem is composed by two objective functions: the first is related to the amplitude of 
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vibration, with the aim of minimizing this amplitude; the second is associated to the suppression bandwidth, where the 
interest is to minimize this bandwidth. Based on the obtained results, the usefulness of the modelling methodology in 
various types of analyses and design of discrete nDVAs is highlighted. 
 
2. NONLINEAR DYNAMIC SYSTEM EQUATIONS OF MOTION 
 

Figure 1 illustrates the two degrees-of-freedom (d.o.f’s) nonlinear dynamic systems reported in the present work. 
Figs. 1(a) and (b) show, respectively, the nonlinear undamped and damped systems, composed by a primary mass 
attached to the ground by a suspension including either linear or nonlinear spring, and a secondary mass coupled to the 
primary system by a linear or nonlinear spring.  

 
 
 
 
 
 
 
 
 

 
 

 
Figure 1. Illustration of the nonlinear two d.o.f’s undamped (a) and damped systems (b). 

 
2.1. Modified Bessel functions for undamped system 
 

By considering that 21 xx > , and the applied force on the primary mass of the form ( ) )tsin(PtF 0 ω= , the equations 
of motion of the two d.o.f’s system can be obtained as follows: 
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where )x(S2 is the following nonlinear spring force associated to the secondary mass:   
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2 ω=                                                                                                                                           (2) 
 
where aXB =  and 21 XXX −= . 

By considering only the first five terms of the Bessel expansion, Eq. (2) assumes the following form: 
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By considering only the first term in Eq. (3), the equations of motion (1) of the nonlinear undamped system can be 

obtained as follows:   
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By adding the expressions (5) and after some mathematical manipulations, the following algebraic equation is 

obtained in terms of the Bessel term: 
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The Eq. (6) can be solved numerically by using the “fsolve” function of the MATLAB® toolbox.  
 

2.2. Modified Bessel functions for damped system 
 

In this section, the interest is to solve by using the modified Bessel functions, the following nonlinear equation of 
motion of the damped system show in Fig 1(b): 
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where 21 xx > , 21 xxx −= . ( ) ( )axsinh
a
k2xS 2

2 = , tiXex ω= , ti
11 eXx ω=  and ti

22 eXx ω= . 

The solution procedure is the same of procedure reported in previously section. Within this aim, the development of 
Eq. (7) enables to obtain the following expressions: 
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By making some mathematical manipulations, one can obtain the following amplitudes of vibrations for the primary 

mass and for the nDVA: 
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where 21 XXX −= , ( )ωω 1

2
111 icmkA +−= . By making some mathematical manipulations and considering 

that aBX = , Eqs. (9) can be expressed as follows: 
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By varying the excitation frequencyω , the roots of the Eq. (10) that represents the amplitude B can be determined, 

and consequently, the frequency response f the systems can be obtained. 
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2.3. Krylov-Bogoliubov perturbation method for nonlinear damped system 

 
In this section, to solve the nonlinear equations of motion of the system represented in Fig. 1(b) one uses the 

averaging method, by considering that the spring force is expressed as following: 
  

( ) 2to1i;xkxkxr 3
i

nl
iiiii =+=                                                                                                                     (11) 

 
where 1x  and 2x  represent, respectively, the displacements of the primary system and  the nDVA.  

In the model above, the dampers are linear, however ik  and nl
ik  represent, respectively, the linear and nonlinear 

coefficients of the springs. To obtain the dimensionless normalized equation of motion of the nonlinear system, the 
displacements are normalized with respect to the length of a given vector cx , such that, cii xxy = . By applying the 
Newton’s second law, and after some algebraic manipulations, the following normalized equation of motion of the 
nonlinear dynamic system can be expressed under the following matrix form: 

 
( ) ( ) ( ) ( )tttt fKyyCyM =++ &&&                                                                                                                                                      (12) 

 
The normalized mass, damping and stiffness matrices are expressed, respectively, by the following relations: 
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where the normalized displacement and force vectors are [ ]T21 yy=y  and [ ]T3
22

3
110 yycosP μεετ −−=f . 

Various perturbation methods (Nayfeh, 2000) are based on averaging that encompass techniques such as the 
following: Krylov-Bogoliubov method, Krylov-Bogoliubov-Mitropolsky method, and the method of the generalized 
average (Thomsen, 2003). In the present work, the Krylov-Bogoliubov method will be used to integrate the matrix 
equation of motion represented by Eq. (12), leading to an approximate solution of the nonlinear differential equations of 
motion. In this context, the Van der Pol Transformation (Hagedorn, 1988) represented by the following expressions are 
employed in order to guarantee that the transformation is unique. 

 
( ) ( ) ( ) τττττ sincos vuy +=                                                                                                                                        (15) 

 
 
( ) ( ) ( ) τττττ cossin vuy +−=&                                                                                                                                       (16) 

 
where tωτ =  and T

21 )u,(uu = and T),( 21 vvv =  are assumed to be slow functions of time τ .  By making some 
mathematical manipulations starting from Eqs. (15) end (16), and after that, by substituting the results into Eq. (13), one 
can obtain the following expression: 

 
( ) ( ) ( )τv,u,fKvCuMvuMKuCvMuvM =++−−++− ττ sincos &&                                                                       (17) 
 
The Eq. (17) can then be integrated over the period (0 to 2π). It is worth mentioning that u and v are taken as 

constants along this period (it represents a very short time interval). After some algebraic manipulations, one can obtain 
the first-order ordinary differential system equation corresponding to motions of period 2π for the original system given 
by Eq. (12). In the case of steady-state periodic vibrations (Borges, 2008), the following condition can be used 

0== vu &&  into the resulted equations, so that the following nonlinear algebraic system with four equations and four 
variables 2121 v,v,u,u  is obtained: 
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The system of equations (18) can be numerically solved by using the function “fsolve” from MATLAB® toolbox. 

Then, the values of 2121 v,v,u,u  can be calculated and the vibration amplitudes of the primary and secondary masses of 

the nonlinear DVA are obtained. The amplitude values are given by 1r  and 2r , according to .2to1i,vur 2
i

2
ii =+=  

 
3. OPTIMIZATION PROBLEM DEFINITION 

 
A general multiobjective optimization problem (MOP) involves the simultaneous optimization of multiple objective 

functions (Lima, 2007), (Eschenauer, 1990), which may be in conflict with each other, and the goal is to find the best 
design solutions, which lead to the minimum or maximum values of the various objective functions. In general, in a 
multiobjective optimization problem there is no single optimal solution and the interaction among different objectives 
gives rise to a set of compromised solutions, known as the Pareto optimal solutions (Srivinas, 1993). Since none of 
these Pareto optimal solutions can be identified as better than the others without any further consideration, the interest is 
to find as many Pareto optimal solutions as possible. A deterministic multiobjective problem includes a set of k  
parameters (decision variables) and a set of n  objective functions ( 2≥n ), and can be summarized as follows: 
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where [ ]Tkxxx ,,, 21 K=x  is a vector of design variables; kRC ⊂  is the design space associated to the equality or 
inequality constraints ( )xjg . For a practical design problem, the vector ( )xF  is non-linear, multi-modal and not 
necessarily analytical. In the case of the nonlinear dynamic system, the deterministic optimization problem is composed 
by two objective functions: the first cost function is the amplitude of the frequency response of the nonlinear system 
corresponding to the natural frequency of the mode of interest (by minimizing the amplitude of the frequency response 
at the corresponding resonance peak); the second objective function is the maximization of the suppression band.  Fig. 2 
shows the definition of the two objective functions considered in the multiobjective optimization problem that can be 
defined through the following relation: 

 
          { bandwidthsuppessionf;)1M(amplitudef :minimize 21 −==                                 (20) 

 

 
 

Figure 2. Representation of the objective functions 1f  and 2f . 
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4. NUMERICAL APPLICATIONS 

 
4.1. Frequency Response of undamped system by using the modified Bessel functions. 
 

This application concerns the same two d.o.f’s system reported in Fig. 1(a). The computations performed consist in 
obtaining the driving point frequency responses associated to the displacements of the primary, 1x , and secondary, 2x , 
systems, respectively. By using the theory presented in Section 2 the nonlinear problem can be solved to obtain the 
amplitudes values of the frequency response. Figures 3 represent the Frequency Responses of the linear and the 
corresponding nonlinear systems by considering a nonlinear coefficient a=20. Through this figure it is possible to 
evaluate the influence of the nonlinear coefficient on the response amplitudes and the suppression bandwidth. The 
dynamic responses shown in Figs. 3 are driving-point related to the vertical displacement of such points. Moreover, it is 
interesting to note the differences between the linear and nonlinear systems in terms of the amplitudes of vibrations and 
the response representation by the introduction of the nonlinear parameter a.  Figure 3(b) show that for very small value 
of a, the frequency response of the nonlinear system is approximately linear. 
 

 
Figure 3. Frequency Response for nominal design of the nonlinear undamped system: (a) a = 20; (b) a = 0.005. 
 

4.2. Frequency Response for damped system by using the modified Bessel functions. 
 
Figures 4 show the amplitudes of the frequency response for the nonlinear damped system represented in Fig. 1(b) 

for various damping factors, obtained by the modified Bessel function. By comparing these figures one can note that 
when the damping factor is augmented the suppression bandwidth becomes larger, demonstrating the significant 
influence of the damping factor on the dynamic behaviour of the nDVA. Another aspect to be pointed out is that the 
responses convey valuable information about the influence of the nonlinear parameter and the damping factor on the 
dynamic behavior of the nonlinear system, being also a very tool for the design, performance analysis, and optimization 
of nonlinear structures. 

 

 
Figure 4. Amplitudes of the Response of the primary mass for different values of damping factor. 
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a = 20 

     (a) 
c1 = 0.005 
c2 = 0.005 
a = 20 

Linear 
Nonlinear 

Linear 
Nonlinear 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 
Figure 5. Response of the primary mass for different values of the nonlinear parameter a. 

 
Figure 5 show the frequency response amplitudes of the primary mass for different values of the nonlinear 

parameter a, putting in evidence the influence of this parameter on the amplitudes of the Frequency Responses. One can 
note that when a small value for the nonlinearity factor is considered, the responses of the nonlinear system assume the 
values of the linear case. However, for high value of a, it is an instability region in the frequency band of interest 
(Borges, 2005). 

 
4.3. Response for damped system by using the Krylov-Bogoliubov averaging method. 

 
With the aim of illustrating the effect of the non-linear coefficient associated to the stiffness of the dynamic 

vibration absorber, the Response of the system for different values of the nonlinear coefficient ( )21 andεε  is shown in 
Fig. 6, for various values of the parameter 2ε , and the other, assuming the following constant values 1.0=β , 

01.021 == ζζ , 05.0=μ  and .1=ρ  
 

 
 

Figure 6. Response of the primary mass for various values of 2ε  
 

One can observe that the principal advantage in using nDVAs is that the amplitude of the dynamic responses in the 
regions that corresponds to Ω>1, decreases significantly. Moreover, one can observe the instabilities regions, and with 
the aim of diminish this effects, the system parameters have to be changed, and within this context, the parametric 
optimization techniques must be used to obtain the best possible results.  

 
5. OPTIMIZATION 

 
The following numerical example is presented to illustrate the application of the optimization technique to obtain a 

robust design of the nDVA. Figure 1 depicts the test structure considered herein. The design parameters and their 
corresponding admissible variations are illustrated on Tab. 1. The values of the other variables are assumed as 

001.01 =ε  and 01.021 == ξξ . These ranges were chosen according to the sensitivity analysis presented in Borges 

    (a) 
c1 = 0.01 
c2 = 0.01 
a = 0.01 

    (b) 
c1 = 0.01 
c2 = 0.01 
a = 50 
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(2008), in such large variations with respect to the nominal values are avoided. Only the ranges of the continuous 
variables are taken as constraints in the robust optimization problem. The computations performed consist in obtaining 
the driving point frequency responses associated to the displacement 1x  of the primary system.  

 
Table 1. Design variables and their admissible variations 
Design parameters Nominal values Variations 

ρ  1.0 ± 30 % 
μ  0.05 ± 30 % 
β  0.1 ± 30 % 

2ε  0.01 ± 30 % 
 
The response functions are computed for an excitation force applied at the primary mass, and the responses are 

acquired at the same point, which is indicated on Fig. 1. The optimization problem is composed by the defined objective 
functions according to Eq. (20), in which the interest is to minimize the amplitude of vibration and to maximize the 
suppression bandwidth according to the definition illustrated on Fig. 2.  

The parameters of NSGA are defined in Table 2.  
 

Table 2. Definition of NSGA parameters used in the optimization process. 
NSGA 

Probability of selection 0.25 
Probability of crossover 0.25 
Probability of mutation 0.25 
Number of generations 100 
Number of individus/generation 30 
Sharing coefficient (σ ) 0.2 

 
Figure 7 represents the evolution of the deterministic solutions. One can conclude that the deterministic solutions 

represented by the point Pd exhibit a better comprise performance than the others points into the Pareto curve.  
 

 
Figure 7. Deterministic solutions – First Front of Pareto 

 
For the deterministic set of solutions corresponding to point Pd indicated in Fig. 8 and represented in Table 3, one 

can calculate the frequency responses of the nonlinear damped system indicated on Fig. 4. 
 

Table 3: Optimal solutions for point Pd 
Optimal point ρ μ β  2ε

Pd 1.1 0.054959 0.09 0.0091724 
 
Figure 8 compares the amplitudes of the Frequency related to the nominal and optimal designs (indicated on the 

figure). The comparison permits to evaluate the nDVA effectiveness in terms of the response amplitudes and 
suppression bandwidth and put in evidence the interest in using optimization procedures with the aim of generate the 
optimal values of the nDVA. 
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Figure 8. Frequency Response for nominal and optimal designs. 
 

7. CONCLUSIONS 
 
In this paper two methodologies to solve a nonlinear damped and undamped systems, and the optimal design of 

nonlinear dynamic vibration absorbers was investigated and implemented. The nonlinearities were introduced both in 
the springs that connect the primary mass to the ground and the absorber to the primary mass.  

In the numerical application, an optimization problem involving simultaneously two cost functions was written, 
aiming at considering relatively complex nonlinear dynamic systems. The choice of the design variables (mass density, 
mass ratio, force parameter, nonlinearity coefficient) is based on previous knowledge regarding their sensitivities with 
respect to the amplitude peak and suppression bandwidth.  It is worth mentioning that these parameters are directly 
associated with the effectiveness of the nDVA.  

In terms of the system resolution, the equations of motion of the nonlinear two d.o.f’s systems were numerically 
integrated by using the so-called average method and the modified Bessel expansion that provides an approximate 
solution to nonlinear dynamic problems. The nonlinear algebraic equations obtained in both cases were numerically 
solved by using the “fsolve” function available in MATLAB® toolbox. This function enables determining the roots of 
the nonlinear algebraic equations.  

As demonstrated by the results, the nonlinearity factor is an important parameter to be investigated during the design 
procedure of nonlinear dynamic systems, due to its contribution to the reduction of the vibration level and the 
augmentation of the suppression bandwidth. However, care must be taken with respect to high values of the nonlinearity 
parameters because of the instabilities that they introduce in the nonlinear systems. This point motivates an important 
aspect regarding the proposed methodology: obtaining the optimal spring nonlinear coefficient that guarantees the best 
stable solution for a given system.  

Finally, the proposed optimal design strategy demonstrates the importance of considering the design variables to be 
evaluated during the optimization process in order to obtain the optimal design that guarantees the most effective nDVA 
for the system considered. 
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