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Abstract. In recent years, the demand for increased capability and flexibility has lead to an increase in the need for
controllers based on open architectures. The Open Robot Control Software (OROCOS) project was born as an effort to
match this demand. It is a general-purpose, open-source, modular framework for robot and machine control. In this
paper, we present an implementation of a robot controller using OROCOS. The system environment is the Linux operating
system with the RTAI real-time patch. The controller is based on a distributed architecture where each processing node is
associated to a joint of the robot. Hence, the system could be extended to other robots. The CANbus is used for real-time
data transfer such as sensor measurements and actuator commands. In OROCOS, each joint is mapped to a component
and can use all the features of the framework. This reduces the cost and work because it allows the reuse of elements
of an existing system. The paper present results of a controller implementation which illustrates the benefits of open
architecture systems.
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1. INTRODUCTION

The market of manipulator robots is dominated by closed architecture systems. A closed system is hard to modify,
and therefore total cost of ownership can be very high. This type of system may be desirable when the application is
well defined and is not expected to change over time (Ford, 1994). However, properties like, flexibility, reconfigurability,
modularity and reusability have been demanded by industries and this has lead to a growing use of controllers based on
open architectures.

A open architecture approach allows for integration of new hardware or software components. Hence, the system
can be continually improved to follow the constant moving needs of modern industry. Another great benefit of open
controllers is the use of "Common of-the-shelf" (COTS) components (Miller, 1993), which reduces the development time
and cost.

Other works have been proposed to control robots in real-time, like (Aroca et al., 2007) and (Gaspar, 2003), but they
don’t use any open architecture control and whole system must be built. In this paper, the OROCOS project is used as
framework to reduces the development time.

The Open Robot Control Software (OROCOS) project was born as an effort to create an open architecture robot control
system. It is a general-purpose, open-source, and modular framework for robot and machine control (Bruyninckx, 2001).

The OROCOS project also was used in (Tavares et al., 2007), but they use expensive proprietary hardware and the
system integration with OROCOS isn’t show in details. The present work describes the use of OROCOS to build an open
control system for a manipulator robot, using Extensible Markup Language (XML) file to do the system configuration.
The paper also describes the hardware developed to interface with the robot and the new OROCOS components created
to integrate the whole system.

This papers is organized as follows: Section 2 presents the robot where the control architecture was implemented.
Section 3 gives details about the hardware of the architecture. Section 4 introduces the OROCOS project, some back-
ground on how to build a component and some of the built-in components available in OROCOS. Section 5 describes
the new components created to integrate the hardware with OROCOS. Section 6 shows the system interconnection and
experimental results from a trajectory-tracking experiment. Conclusion and future works are described in Section 7.

2. THE JANUS ROBOT

The Janus robot, shown in Fig. 1, is used in this paper. It is an anthropomorphic two-armed robot, with eight degrees
of freedom in each arm, and a stereo vision system. The vision system shown in Fig. 2 consists of two links connected in
series by two revolute joints. Two cameras are attached to the far-end of the chain. Each joint is driven by DC motors and
contains an incremental quadrature encoder and a reference index inductive switch.

3. THE PROPOSED CONTROL ARCHITECTURE

The control architecture proposed in this paper is based on distributed processing nodes, called AIC, for each joint of
the robot. Each AIC drives a DC motor through a PWM converter and interfaces with an incremental quadrature encoder,
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Figure 1. Janus robot.

an index inductive switch and an electromagnetic brake.
A CANbus is used for real-time data transfer such as sensor measurements and actuator commands, between each AIC

and a host PC. CANbus is an open protocol (Xuemei and Liangzhong, 2007) that has gained widespread popularity not
only in the automotive industry but also in the industrial automation arena. CAN has also proven that it fits very well into
the suite of field-buses or sensor/actuator buses because of its low price, multiple suppliers, highly robust performance
and already widespread acceptance. Priority arbitration, error detection and re-transmission are all handled by the CAN
controller hardware. Thus, the network may have a mechanism to ensure that the data transmission and reception is
uninterrupted.

Figure 2. Vision system of the Janus robot.

A personal computer with an AMD Athlon 64 4000+ processor and 1GB of RAM, running on Linux-2.6.22 with the
RTAI-3.6 real-time patch is used as host. The controller based on the OROCOS framework executes in the host PC. A
scheme of the connection between the host PC and the AICs nodes is shown in Fig. 3. More details about the hardware
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and software can be found in (Santini and Lages, 2008).
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Figure 3. Distributed control system.

Figure 4. OROCOS libraries.

4. OROCOS

The OROCOS project is a general-purpose and open robot control software package and follows the Open Source
development model that has been proven to work for many other software packages (Bruyninckx, 2001). The OROCOS
rely on a ”divide and conquer“ approach and, as such, it relies on 4 supporting C++ libraries, as show in Fig. 4 :

The Orocos Real-Time Toolkit (RTT): provides the infrastructure and the functionalities to build robotics applications
in C++, with emphasis in real-time, on-line interactive and component based applications (The OROCOS project,
2009).

The Orocos Components Library (OCL): provides some components models for general purpose.

The Orocos Kinematics and Dynamics Library (KDL): allows for the calculation of kinematic chains in real-time.

The Orocos Bayesian Filtering Library (BFL): an independent framework for inference in Dynamic Bayesian Net-
works.

In this paper, the RTT and OCL libraries are used in their version 1.8.
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4.1 Real-Time Toolkit

The RTT is a middleware between the applications components and the operating system. It manages the communi-
cation, the execution flow and the configuration of components, as show in Fig. 5. In RTT, the interface of a component
consists of attributes, properties, commands, methods, events and data flow ports. The interface is shown in details in
Fig. 6. This library serves as a base to build an application upon.

A component model is a description of the component. It defines the interface, behavior, and implementation of the
component. It is built using primitives from RTT. A component is a modular and replaceable part of the system that
encapsulates the implementation and exposes its interfaces. Components are instantiated from component models.

Figure 5. OROCOS as middleware(Soetens, 2009).

Figure 6. Interface of a component(Soetens, 2009).

Attributes and properties are used to configure the component when it is instantiated from a component model, al-
though only properties can be written to and updated from a configuration file in XML format. In this way, it is possible to
store persistent states, i.e., values that are important to keep between program executions, like the final joint position can
be the next initial position. Reading and writing properties and attributes is done in real-time but is not thread-safe. Hence
if a component reads a value while another component is updating such a value exactly at the same time, this could cause
a mutual exclusion problem, resulting in an unknown value on reading. Because of this, reading and writing properties
from for a running component are limited to the task own activity (Soetens, 2009).
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A command is a function that is executed asynchronously with respect to the caller, running in the thread of the
command owner. Multiple commands, for the same component, are queued by RTT. Contrarywise, methods are intended
to be called synchronously by the caller, and execute like a function in the thread of the caller. Calling methods is done in
real-time but is not thread-safe and should, for a running component, be guarded with a Mutex if it’s functionality requires
so (Soetens, 2009).

An event is a signal that is emitted to subscribers of that signal of the component. This allows for a reaction of other
components to a change in the system. One or more functions can be called when an event is triggered, and they can be
executed asynchronously or synchronously. Publishing and reacting to an event is done in real-time (Soetens, 2009).

The data flow ports are the way to exchange information between components. A data flow can be read-only, write-
only or read-write, through buffered or unbuffered ports. A read-only port can only be read in its component and cannot
be write. Reading and writing data ports is always done in real-time and is thread-safe (Soetens, 2009). Table 1 resumes
the real-time characteristics for component interface.

Table 1. Real-time characteristics for component interface.

Interface Real-time Thread-safe Synchronous
Event yes n/a yes/no

Attributes/Properties yes no yes
Commands yes n/a no

Methods yes no yes
Data Ports yes yes yes

One component can only access the other component’s interface when it is connected as a ”peer“. This connection can
be uni-directional or bi-directional and allows the reaction of events, the sending of commands and the call of methods
from another component. However, the data flow ports should be connected to each other in a explicit way and do not
need to be connected as ”peer“. This is useful to build an interface for AIC component as described in section 5.

4.2 The OROCOS Components Library

The OCL is a set of components models contributed by users to the OROCOS project. This section explains the compo-
nents that are used in this work: TaskBrowser, DeploymentComponent, ReportingComponent and nAxesControllerPos.

4.2.1 Taskbrowser

The TaskBrowser is a component model for user interaction with other components. When TaskBrowser component
is connected to another component, it dynamically creates data ports and connects them to the other component. In this
way, it can read/write in data ports, send commands to and call methods from the other component.

4.2.2 DeploymentComponent

The DeploymentComponent is a component model for loading and configuring other components through an XML
file or an OROCOS script. In general when an OROCOS application is created and two components are instantiated from
DeploymentComponent and TaskBrowser models. Then, the TaskBrowser component uses the XML file to command
the DeploymentComponent component to do the system configuration. The DeploymentComponent component does the
basic tasks: creates the components of the system; makes the interconnection between the components; configures the
properties of the components from a specific XML file for every component; starts the components.

4.2.3 ReportingComponent

The ReportingComponent is a component model for monitoring and capturing data flow (from data-flow ports)
between OROCOS components. The data can be logged into a file, or can be printed in a console. The configuration of
what is logged and how data is captured is performed by a XML file. The ReportingComponent can be inserted into the
system by the DeploymentComponent component just like any other component.

4.2.4 nAxesGeneratorPos

This component generates paths between the current positions and new desired positions for multiple axes. It uses KDL
to compute the time interpolations. The paths of all axes are synchronized, meaning that all axes movements are scaled in
time to the longest axis-motion. The interpolation uses a trapezoidal velocity profile using a maximum acceleration and a
maximum velocity, which are configured in a XML file as properties of this component, together with the number of axis.

This component has a moveTo(vector positions, double time) command, which generates a new motion-
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profile starting from the current position to the desired position with a minimum time. Besides, a resetPosition()
method resets the desired position to the current measured position and the desired velocity to zero, stopping the robot
motion.

The nAxesGeneratorPos has two write-only data ports where the desired velocity and position are received and one
read-only data port where the measured position is made available.

5. COMPONENTS MODELS FOR INTERFACE JANUS TO OROCOS

This section presents the components models that were build to interface the Janus to OROCOS: AIC, Controller and
Bridge. The AIC will be used to interface the robot in a PC while the Controller will grant the reference tracking for each
joint. The Bridge is need to communicate this components to the built-in components in OROCOS.

5.1 AIC Component Model

The AIC component model is an abstraction of the AIC hardware, shown as block diagram in Fig. 7, which allows the
user to command the AIC card and that encapsutales the details of the communication, details in (Santini and Lages, 2008).
Besides, it has to be able to represent any joint in the robot, independent of its details, like different gear ratios for different
joints. For this, the AIC component model was created to grant flexibility and has a set of properties that enable the
configuration of the component for each joint of the robot. These properties are:

UARTPWM CAN

dsPIC30F4012

RS232 PCA82

Motor DB9 CANBUS

H bridge

Brake

Open Collector

Brake

Voltage Divider

Encoder

Encoder Index

Index

Figure 7. AIC block diagram.

JointNumber: The identification of the joint in the robot. Every AIC card has an ID number. This number identify the
joint.

Brake: Informs weather the joint has a brake. Some joints of Janus have an electromagnetic brake to hold the robot
position while it is in powered-off state. If the value of his property is true, the AIC component releases the brake
on its initialization and applies on its finalization.

MotorSign: If true, inverts the sign of the voltage that is applied in the joint. This is useful because it allows is desirable
that the joint moves in accordance with right hand rule for a specific frame. This allows that the robot can be
modeled with different forms without hardware changes.

EncoderSign: If true, inverts the sign of readings of the encoder. Similar to MotorSign, but it is applicated to encoder.

GearRatio: The gear ratio between the motor and the robot axis. This is necessary because the encoder measures the
displacement of motor axis and the gear ratio is different for every joint.

InitialPosition: Initial position of the joint. Incremental quadrature encoder does not hold the absolute position and when
the AIC component is initialized, it assumes that the joint will be in this position. This can be extended to store the
last position of joint in the finalization of AIC component.

This properties can be configured from a XML file, like as shown in Fig. 8. Each property has its name and the type
of value that can be loaded. For an another joint, the values between the values terms must be changed.

Each joint of Janus has an incremental encoder. This allows the measurement of the displacement of each joint and
the position by integrating the displacement along the time. These data are written into two write-only data ports. Some
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Figure 8. Configuration File for AIC component.

joints have an index inductive switch to detect the physical limit for the joint. This data is written in a write-only data
port. Furthermore, a write-only data port is used to make the voltage value that is applied to the motor available to other
components. Note that all other components should only read this port.

The action of AIC component is made through the methods interface. The methods interface is used because it
is synchronous with the caller, unlike the commands interface, and this is needed in controls strategies. The methods
correspond to functions performed by the devices embedded in AIC card, like MotorSet(double voltage) to actuate
the motor and EncoderRead(void) to update the position, displacement and index data ports.

5.2 PID Component Model

The PID component model is a implementation of a Independent PID controller in joint space, including control signal
saturation. Each joint of the robot is treated as a single joint servomechanism. It is well-known that this control method is
not the most effective for high performance manipulators, but it is widely used in industrial applications (Fu et al., 1987)
due to its simple implementation.

The PID controller involves three separate gains, shown in Eq. (1): the proportional Kp, the integral Ki and derivative
Kd . The ū is the saturation, which means the maximum admissible value of the input. The error value e(t) is the difference
between the desired value and the measured output.











u(t) = Kpe(t)+Ki
R t

0 e(t)dt +Kd ė(t) , |u(t)| ≤ ū

u(t) = ū ,u(t) > ū

u(t) = − ū ,u(t) < − ū

(1)

The discrete form of PID algorithm is as show in Eq. (2) (Hemerly, 1996). This Equation has a better response that
the direct discretization on Eq. (1) to systems with saturation constraints.











u[k] = u[k−1]+ kp(e[k]− e[k−1])+ kie[k]+ kd(e[k]−2e[k−1]+ e[k−2]) , |u[k]| ≤ ū

u[k] = ū ,u[k] > ū

u[k] = − ū ,u[k] < − ū

(2)

The PID component implements the Eq. (2) without loss of generality by including all its parameters as properties of
PID controller. This way, every joint can have its own control law using the same component model. This grants more
extendibility for the whole system. Another property is defined to tie the controller to an specific AIC.

In order to exchange data between the AIC and PID components, the PID must to have the data ports similar to those
existing in AIC, but with a read-only permission. Besides, a read-only data port is used to receive the desired position
from nAxesGeneratorPos.

The PID component creates a periodic thread that receive the desired position from nAxesGeneratorPos and the mea-
sured position from AIC. Then, it calculates the output value using Eq. (2). The voltage is applied to the motor through
the methods in AIC.

5.3 Bridge Component Model

In order to write the measured positions to nAxesGeneratorPos is necessary to put the AIC position in a vector format
because in OROCOS, only the same type of data ports can be connected. The bridge component models has the purpose
of convert data formats between robot-oriented built-in OROCOS components and the joint-oriented custom components
such as PID and AIC. It has two read-only data ports of double to read the AICs positions and one write-only data port
to write the vector with this positions. When a AIC component writes on its position data port, a interrupt occurs and the
vector of measured positions is updated too.
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6. EXPERIMENTAL RESULTS

The experimental system, shown in Fig. 9, is used to control the vision system of the Janus robot. The system
configuration is done with the DeploymentComponent component (Deployer) via a script and XML files. For each joint,
an AIC component is created with its respective properties. Then the PID components are created and connected to their
correspondent AIC, which grants them access to AIC’s methods. Furthermore, the nAxesGeneratorPos component,
ReportingComponent component (Reporter), the bridge component are inserted into the system.
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positon <double>
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Data Ports
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EncoderRead(void)
MotorSer(double)

AIC Component
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Figure 9. System.

All the data ports connections are done through a configuration file in XML format. The Reporter is connected to
AICs to receive all the AICs status. It will be responsible for store this informations in log files. The TaskBroswer
component is used as user interface, it can be connected and used to send commands to nAxesGeneratorPos component
by the user. When the moveTo command is send from TaskBrowser to nAxesGeneratorPos, the nAxesGeneratorPos
component will write new desired positions in its data ports that is connected to the reference ports for PIDs components.
Then, in each period of control, each PID will read its desired position, call the EncoderRead methods to update the
position data ports of its AIC component, read its position port, calculate the voltage value and call the MotorSet to set
the voltage in its AIC component. With another period, the Reporter will read all AICs data ports to report to a log file.

The performance of the system is evaluated by a trajectory-tracking experiment. From the initial position, a new
position is commanded to the joints of the robot, and the generated trajectory and the measured trajectory are compared
in Fig. 10 and Fig. 11.

The performance of system is evaluated through the following criterions: integral absolute error criterion (IAE),
integral time absolute error (ITAE), integral squared error (ISE) and integral time squared error (ITSE). The results are
shown in Tab. 2.

The generated and the measured trajectories are very close in both joints and this demonstrates that the performance
of the system is satisfactory.
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Table 2. System performance.

Criterion Joint 1 Joint 2
IAE 0.0213 2.3584×10−5

ITAE 17.2231 9.4423
ISE 0.0012 5.5622×10−10

ITSE 0.8750 0.3072

Figure 10. Trajectory-tracking of joint 1.

Figure 11. Trajectory-tracking of joint 2.

7. CONCLUSIONS AND FUTURE WORK

An open architecture controller for the Janus robot was presented in this paper. By using the OROCOS and the
component-based paradigm, it was possible to achieve:

• a reduced project time, due to the reuse of components, like reporter, avoiding the need to build these features. The
RTT layer allows for working in real-time and to dealing with communications among threads without knowing all
the the details of the implementation.

• an easily extension to other manipulator robots due to the facility of add more AIC components to control more
joints.



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

The system was designed as a base for more complex work. In future developments, other approaches for control, like
strategies using the dynamic model of the robot, will be implemented.
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