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Abstract. Composite materials have been regarded as a convenient strategy in various types of engineering systems 
such as aeronautical and space structures, as well as architecture and light industry products. It is due to its 
advantages to the traditional engineering materials, characterized by its low density associated with high 
strength/stiffness relation characteristics, and its anti-corrosion properties. However, the great variety of materials 
properties and structural configurations makes the numerical modeling of the mechanical behavior of composite 
structures a complex task. Moreover, applications to the case of vibration and damping analysis of composite 
sandwich plates incorporating viscoelastic materials are not numerous, which motivates the study reported herein. 
This is a reason for which in the last decades, a great deal of effort has been devoted to the development of finite 
element models for characterizing the mechanical behavior of composite sandwich plates with viscoelastic layers, 
accounting for its typical variations of constructions, various orientations possibilites and the damping effects. In this 
paper the finite element modeling of composite sandwich plates incorporating viscoelastic materials is presented. The 
incorporation of the viscoelastic behavior into the composite sandwich finite element models is made by using the 
complex modulus approach and the numerical resolution of the resulting equations of motion are particularly relevant 
aspects of the modeling procedures since the viscoelastic stiffness matrix is frequency- and temperature-dependent. 
After the discussion of various theoretical aspects, the frequency responses functions are calculated for a rectangular 
composite sandwich plate with viscoelastic layers. Moreover, in this paper the formulation of first-order sensitivity 
analysis of complex frequency response functions is developed for composite sandwich plates with viscoelastic 
damping. The results obtained are compared with the corresponding obtained for a composite plate without damping, 
and the usefulness of the sensitivity modeling methodology in various types of analyses and design of composite 
sandwich plates incorporating viscoelastic damping is highlighted. 
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1. INTRODUCTION 
 

Composite materials have been regarded as a convenient strategy in various types of engineering systems such as 
aeronautical and space structures, as well as architecture and light industry products. It is due to its advantages to the 
traditional engineering materials, characterized by its low density associated with high strength/stiffness relation 
characteristics, and its anti-corrosion properties. However, the great variety of materials properties and structural 
configurations makes the numerical modeling of the mechanical behavior of composite structures a complex task. This 
is a reason for which in the last decades, a great deal of effort has been devoted to the development of finite element 
models for characterizing the mechanical behavior of such materials, accounting for its typical variations of 
constructions and various orientations possibilities. Much of the knowledge available to date is compiled in the works 
by Reddy (1997) and Chee et al. (2000) and in some papers such as those by Lo et al. (1997), Meunier and Shenoi 
(2001), Cugnoni and Gmür (2004) and Berthelot (2006).  

For the purposes of this paper, the well-known Higher-order Shear Deformation Theory – HSDT that enables to 
model both in-plane and out of plane modes of deformation, by using the cubic displacement functions relative to the 
transverse dimension, proposed by Lo et al. (1997) and Chee (2000) is retained. The main advantages of this 
displacement field are: (i) it can model both thin as well as thick laminated composite plates; (ii) it is not necessary to 
introduce any correction factors such as those required for the First-order Shear Deformation Theory – FSDT; (iii) it 
can model transverse shear effects and predicts a parabolic transverse shear strains; (iv) it is also able to model 
transverse normal strain. This method has been developed in order to study the dynamic behavior of undamped fibre 
reinforced plastic sandwich plates, where the energy dissipation mechanisms in the structures are neglected. However, 
most of the studied fibre reinforced plastic sandwich plates are composed of, among other things, a resin system and a 
PVC core, which exhibit viscoelastic damping characteristics (Meunier and Shenoi, 2001). Since the energy dissipation 
mechanism in a structure plays an important role in vibration control and fatigue, it is important to take into account the 
contribution of the viscoelastic damping when the dynamic behavior of composite sandwich structures is investigated. 

In the context of analysis and design of composite structures, an important topic to be addressed is the so-called 
sensitivity analysis, which enables to evaluate the degree of influence of variations of physical and/or geometrical 
parameters on the mechanical behavior. Sensitivity analysis constitutes an important step in various types of problems 
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such as model updating, analysis of modified structures, optimal design, system identification, control and stochastic 
reliability assessment (Lima et. al., 2006). Sensitivity analysis is generally based on the evaluation of the derivatives 
(most frequently limited to the first-order) of the system response with respect to a set of parameters of interest (Haug et 
al., 1986). It can be associated to different kinds of mechanical responses: static displacements, eigenvalues and 
eigenvectors, frequency response functions and time responses. According to Murthy and Haftka (1988), the optimal 
design structural systems has a narrow connection with sensitivity analysis, since a significant part of typical 
optimization algorithms generally perform a large number of evaluations of the system response for different values of 
the design variables. Derivatives can be used to approximate the response of modified systems, thus reducing the cost of 
re-analysis, especially for structures representative for industrial test cases. Several approaches have been developed for 
performing sensitivity analysis of dynamic responses, as reported in reference (Haug et al., 1986). However, 
applications to the case of vibration and damping analysis of composite sandwich plates incorporating viscoelastic 
materials are not numerous, which motivates the study reported herein. The incorporation of the viscoelastic behaviour 
into the composite sandwich finite element models is made by using the complex modulus approach and the numerical 
resolution of the resulting equations of motion are particularly relevant aspects of the modeling procedures since the 
viscoelastic stiffness matrix is frequency- and temperature-dependent.  

In the remainder, after the discussion of various theoretical aspects, first-order response derivatives are 
calculated for a rectangular composite sandwich plate with viscoelastic material. The results obtained are compared 
with first-order finite-difference approximations, and the usefulness of the sensitivity modeling methodology in various 
types of analyses and design of composite sandwich plates incorporating viscoelastic damping is highlighted. 
  
2. BACKGOUND ON FINITE ELEMENT FORMULATION OF COMPOSITE PLATES 
 

In this section the formulation of a composite plate finite element is summarized, based on the original 
developments made by Lo et al. (1997) and Chee (2000). Fig. 1 depicts the principal components of the composite plate 
reported herein, whose dimensions in directions x  and y  are denoted by a  and b , respectively.  

The mechanical behavior of the composite structure can be model by using the Higher-order Shear Deformation 
Theory, in which the displacements at an arbitrary point in such a composite is expressed as follows: 

 
( ) ( ) ( )y,xzz,y,x u uAU =                                                                                                                                       (1) 
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Figure 1. Illustration of the laminated composite plate components of thickness h . 
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( )000 w,v,u  and ( )zyx ,, ψψψ  are, respectively, the mid-plane displacements and the rotations due to shear deformations 
about x , y  and z  directions. The higher order terms, xζ , yζ , zζ , xΦ  and yΦ , are analogous to the change in 
curvature of displacements.  

 
The finite element discretization for the general composite plate is made based on the displacements fields (1) for 

which the thickness variable z  is separated from the 11 in-plane functions. The mechanical strains-displacements 
relations are defined in the standard manner, and grouped as bending and transverse shear strains, bε  and sε , 
respectively, as follows: 
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( ) [ ] ( ) ( ) ( )y,xzy,xzzzz,y,xb uDbuDDDD =+++= 3
3

2
2

10ε                                                                            (2.a) 
 

( ) [ ] ( ) ( ) ( )y,xzy,xzzz,y,xs uDsuDDD =++= 6
2

54ε                                                                                          (2.b) 
 
where ( ) [ ]Txyzzyyxxb z,y,x γεεε=ε  and ( ) [ ]Tzxyzs z,y,x γγ=ε . xuxx ∂∂=ε , yvyy ∂∂=ε , zwzz ∂∂=ε , 

( )xvyuxy ∂∂+∂∂=γ , ( )ywzvyz ∂∂+∂∂=γ  and ( )xwzuzx ∂∂+∂∂=γ  are the strain-displacement relations. Matrices 
( )60,...,ii =D  are formed by derivatives of the shape functions according to the differential operators appearing in the 

strains-displacements relations. Note that it is an important step that will result in much convenience in the 
parameterization process.  
 

Space discretization of the mechanical variables based on the third-order displacement theory converts Eqs. (1) and 
(2) to a finite element using appropriate shape functions and mechanical nodal variables. Hence, for 8-node rectangular 
plate element, the 11-mechanical variables represented by vector ( )y,xu  are related to their corresponding 88-
mechanical nodal variables appearing in vector eu  through the following relation: 

 
( ) ( ) eu ,, uNu ηξηξ =                                                                                                                                                      (3) 

 
where [ ]Tyixiziyixiziyixiiii

i
e wvu ΦΦζζζψψψ=u ( )8,...,1i =  is the vector composed by the mechanical nodal 

variables appearing in vector eu . ( )ηξ ,N i
u ( )81,...,i =  found in matrix ( )ηξ ,uN  of dimensions 8811× , represents the 

standard serendipity 8-node shape functions formulated in local coordinates ( )ηξ ,  that must correspond properly with 
the global coordinates numbering ( )y,x (Reddy, 1997).  
 

By considering Eqs. (1) to (3), the displacements field and bending and shear strain relations in the finite element 
local coordinates can be formulated as follows: 

 
( ) ( ) ( ) euu ,zz,, uNAU ηξηξ =                                                                                                                                         (4) 

 
( ) ( ) ( ) ( ) eueub z,,,zz,, uBbuNDb ηξηξηξ ==ε                                                                                                           (5.a) 

 
( ) ( ) ( ) ( ) eueus z,,,zz,, uBsuNDs ηξηξηξ ==ε                                                                                                           (5.b) 

 
Based on the stress-strain relations, the strain and kinetic energies of the composite plate element can be formulated 

in terms of the natural variables of strain field and the mechanical material properties. After, Lagrange’s equations are 
used, considering the nodal displacements and rotations as generalized coordinates, to obtain the following elementary 
mass and stiffnesses matrices, respectively:  
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where [ ]11 +−= ,ξ  and [ ]11 +−= ,η  are the local coordinates intervals for the standard serendipity 8-node shape 

functions, and [ ]supinf z,zz = is the layer thickness interval.  
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The integrals appearing in Eqs. (6) are performed for a rectangular element in global coordinates by using the 
Jacobian J  transformation. Moreover, one can note that the matrices ( )θbC  and ( )θsC  represent the transformed 
orthotropic bending and shear elastic material property matrices for a rotation θ  about the z -axis (see Fig. 1), to 
consider the various orientations possibilities:  

 
( ) ( ) ( )θθθ T

bbbb TCTC =                                                                                                                                               (7.a) 
 

( ) ( ) ( )θθθ T
ssss TCTC =                                                                                                                                               (7.b) 

 
where bC  and sC  are the classical orthotropic bending and shear elastic material property matrices; ( )θbT  and ( )θsT  
are, respectively, the bending and shear transformation matrices depending on the rotation about the z (Reddy, 1997). 
 
3. COMPOSITE SANDWICH PLATES WITH VISCOELASTIC LAYERS 

 
For a composite sandwich structure configuration incorporating viscoelastic layers between laminated composite 

plates, the viscoelastic material property matrix must be taking into account the frequency and temperature dependence 
behavior of the viscoelastic material. By considering that the viscoelastic material properties reported herein are 
assumed to be isotropic, the Eqs. (6.b) and (6.c) assume the following forms: 
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where the subscript ( )v  indicates the elementary viscoelastic zones. ( )T,b ωC  and ( )T,s ωC  are frequency- and 
temperature-dependent viscoelastic material property matrices. 

 
The inclusion of the frequency- and temperature-dependent behaviour of the viscoelastic material can be made by 

using the so-called Elastic-Viscoelastic Correspondence Principle (Christensen, 1982), according to which, for a given 
temperature, matrices ( )( )T,v

b ωΚ  and ( )( )T,v
s ωΚ  can be first generated for the plate element assuming that the 

longitudinal modulus and/or the shear modulus appearing in matrices ( )T,b ωC  and ( )T,s ωC  (according to the stress-
state) are constant. Then, after the FE matrices are constructed, the frequency-temperature dependency of those moduli 
is introduced according to the complex modulus approach combined with the Frequency-Temperature Superposition 
Principle – FTSP (Nashif et al., 1985). By assuming the widely accepted hypothesis of a constant (frequency-
independent) Poisson ratio for the thermorheologically-simple viscoelastic materials, ( )T,E ω  becomes proportional to 
( )T,G ω  through the relation ( ) ( ) ( )νωω += 12T,ET,G . Then, one of the two moduli can be factored-out of the 

viscoelastic stiffnesses matrices as follows: 
 

( ) ( ) ( ) ( )v
b

v
b T,GT, ΚΚ ωωα =                                                                                                                                       (9.a) 

 
( ) ( ) ( ) ( )v

s
v

s T,GT, ΚΚ ωωα =                                                                                                                                        (9.b) 
 

where ( )v
bΚ  and ( )v

sΚ  are the frequency-independent stiffnesses matrices of the viscoelastic layers, which are combined 
with the stiffnesses matrices associated with the elastic parts represented by the Eqs. (6.b) and (6.c), to produce the 
following complex stiffness matrix: 

 
( ) ( ) ve TGT KKK ,, ωω +=                                                                                                                                          (10) 

 
Based on the formulation presented in the previous sections, and neglecting other forms of damping, the finite 

element equations of motion in the frequency domain of the composite sandwich plate incorporating viscoelastic 
materials, can be expressed as follows: 
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( )[ ] ( ) ( )ωωωω FQMKK =−+ T,T,G ve
2                                                                                                                 (11) 

 
where N  is the number of degrees-of-freedom (d.o.f’s). NNR ×∈M  is the mass (symmetric, positive-definite) matrix, 
and NN

e R ×∈K and NN
v R ×∈K  are the stiffnesses matrices (symmetric, nonnegative-definite) corresponding to the 

elastic and viscoelastic substructures, respectively. ( ) NRT, ∈ωQ  and ( ) NR∈ωF are, respectively, the vectors of 
displacements and external loads. The receptance or FRF matrix is expressed as: 

 
( ) ( )[ ] 12 −

−= MKH ωωω T,T,                                                                                                                                      (12) 
 
Based on Eq. (12), the interest is to evaluate the influence of the viscoelastic damping on the amplitudes resonance 

peaks of the FRFs. 
 
4. SENSITIVITY ANALYSIS OF STRUCTURAL RESPONSES 
 

The global finite element matrices appearing in Eqs. (6) and (8), establish the dependence of the response of the 
system with respect to a set of design parameters. Such functional dependence can be expressed as follows: 

 
( ) ( )[ ]pKpMrr ,=                                                                                                                                              (13) 

 
where r  and p  designate vectors of structural responses and design parameters, respectively. 

 
The sensitivity of the responses with respect to a given parameter ip , evaluated for a given set of values of the 

design parameter 0p  can be estimated by finite differences by computing successively the responses corresponding to 
0
ii pp =  and iii ppp ∆+= 0 , and then computing defined as the following partial derivative: 
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Such approach is in general inefficient from the computation point of view. In fact, for finite element models of 

composite structures composed by many thousands of degrees-of-freedom (d.o.f’s), the time to compute the finite 
differences by the successively computation of the dynamic responses can become prohibitive. Moreover, the results 
depend upon the choice of the value of the parameter increment ip∆ , which has to be small compared to the 
corresponding parameters ip . Another strategy consists in computing the analytical derivatives of the structural 
responses with respect to the parameters of interest. This approach is considered in the following section. 
 
4.1. Sensitivity of the FRFs with respect to structural parameters. 
 

Consider the complex FRF matrix of a composite sandwich plate incorporating viscoelastic material as given by Eq. 
(12). Sensitivity with respect to a given structural parameter ip  can be computed by deriving the relation 

( ) ( ) IHH =− pT,,pT,, ωω 1 : 
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Regarding the equation above, it should be noted that when the parameter ip  appears explicitly in matrices M  

and/or ( )T,ωK , the computation of the derivatives of these matrices with respect to such parameter is straightforward, 
generally resulting in sparse matrices. It is important to mention that in the present work the computations of the partial 
derivatives are performed by considering that the design parameters retained herein are not correlated. Nevertheless, if 
some are related to each other, the proposed method will not be able to describe accurately the sensitivity of the global 
response to the different parameters and the correlations between the corresponding variables must be taking into 
account. 
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The principal advantages of the analytical approach when compared with the numerical method (finite difference), is 
the fact that it can be used to approximate the behavior of the modified composite structures without the re-actualization 
of the nominal system during the iterative optimization and/or model updating processes, leading to a drastically 
reduction of the time required for computing the FRFs. Moreover, this approach can be advantageously adapted to 
several others structural domains based on iterative processes: stochastic structural dynamics, nonlinear mechanics, and 
reliability-optimization-based design. Nevertheless, the computation of the first-order derivatives of the responses with 
respect to parameters of interest requires that these parameters appear explicitly in the finite element matrices by 
performing the parameterization process when possible (Lima et al., 2006; 2009), constituting a great disadvantage of 
the analytical method. 

 
4.2. Sensitivity of the FRFs with respect to temperature. 

 
The computation of the derivatives of FRFs with respect to temperature requires that such parameter appear 

explicitly in the viscoelastic stiffnesses matrices. This is possible through the use of the so-called FTSP principle, also 
known as Williams, Landell and Ferry (WLF) Principle (Nashif et al., 1985), which establishes a relation between the 
effects of the excitation frequency and temperature on the properties of thermorheologically-simple viscoelastic 
materials. This implies that the viscoelastic characteristics at different temperatures can be related to each other by 
changes (or shifts) in the actual values of the excitation frequency. This leads to the concepts of shift factor and reduced 
frequency, symbolically expressed as: 

 
( ) ( ) ( )00 T,GT,GT,G Tr ωαωω ==                                                                                                                             (16.a) 

 
( ) ( ) ( )00 T,T,T, Tr ωαηωηωη ==                                                                                                                              (16.b) 

 
where T  is an arbitrary value of the temperature, 0T  is a reference value of temperature, ( )ωαω TTr =  is the reduced 
frequency, ω  is the actual frequency, and ( )TTα  is the shift function. Functions ( )rωG  and ( )TTα  can be obtained 
from experimental tests for specific viscoelastic materials (Nashif et al., 1985). Drake and Soovere (1984) suggest 
analytical expressions for the complex modulus and shift factor for various commercially available viscoelastic 
materials. The following equations represent, respectively, the complex modulus and shift factor as functions of 
temperature and reduced frequency in the intervals KT 360210 ≤≤  and Hzx.. 6100101 ≤≤ ω , for the 3M™ ISD112 
viscoelastic material (3M) (which is considered in the numerical applications that follow), as provided by those authors: 
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where:  
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The final result of a damping material analysis is a reduced temperature nomogram, which expands the limited 

number of test results to a graph from which the designer can obtain the damping material’s properties (modulus and 
loss factor) at any given combination of temperature and frequency. Fig. 2 depicts the standardized curves representing 
the variations of the storage and loss moduli and the loss factor as functions of the reduced frequency, as obtained from 
Eq. (17.a), and a plot of the shift factor as a function of the temperature, as given by Eq. (17.b). 
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(a) 

 
(b) 

 
Figure 2. (a) Master curves (  G′ ; η ) for the 3M™ ISD112 material; (b) Shift factor curve for the 3M™ 

ISD112 material (adapted from Lima et al., 2006). 
 
The procedure for reading the nomogram is as follows: select a combination of temperature and frequency, for 

example, 280 K and 200 Hz and find the point for 200 Hz on the right-hand axis. Follow from that point horizontally to 
the line for 280 K temperature. At this intersection, draw a vertical line which defines the reduced frequency on the 
below axis, and the storage modulus and the loss factor on the left-hand axis. In this example ( ) MPa,G 116280200 =′  
and ( ) 8540280200 ., =η . 

By combining Eqs. (15) and (16) with Eq. (17), one writes: 
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5. NUMERICAL RESULTS 
 
5.1. Composite plate with structural damping. 
 

To illustrate the computation procedure of the FRFs, as the first example, numerical tests were performed using the 
FE model of a simple supported square (a=b=0.16m) composite plate as shown in Fig. 3(a). Fig. 3(b) illustrates the 
model composed by a total number of 64 finite elements and 225 nodes. The following simply supported boundary 
conditions are applied on the square composite plate [17]: 000 ===== zxzwu ζζψ  at 0=y  and ay = , and 

000 ===== zyzwu ζζψ  at 0=x  and bx = . The composite plate consists of 5 layers of the same thickness h/5 

(h=a/128m), with the layups ( )ooooo 45045045=θ . The real values of the material properties characteristics of each 
layer are [17]: GPa.E 41721 = , GPa.EE 89632 == , GPa.GG 4531312 == , GPa.G 38123 = , 2501312 .==νν , 

30023 .=ν  and 31566 m/Kg=ρ  (adopted). The value of the structural damping factor considered herein is 0010.=η , 
so that ( )η×+×= iEE 1  and ( )η×+×= iGG 1 , respectively. The computations consist in obtaining the sensitivities of 
the driving point FRF corresponding to the point I, denoted by ( )pω,IIH , as shown in Fig. 3(b). 

In this example, the thicknesses and orientations of the layers were considered as the design variables in the 
computation of the sensitivities of the FRF ( )pω,IIH . The real and imaginary parts of the complex sensitivity functions 
obtained by using the first-order derivatives according to Eq. (15) are shown in Figs. 4 to 6, where they are compared to 
the approximate sensitivity functions calculated by finite differences having been adopted the variations from 5% of the 
nominal values of 51 hh = , 53 hh =  and o453 =θ , respectively. Also, in the same figures, the real and imaginary parts 
of the FRF ( )pω,IIH , multiplied by convenient scale factors, are shown.  
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Figure 3. Illustration of the composite plate geometry (a) and the FE model discretization (b). 
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Figure 4. Sensitivities of the FRF ( )pT,ω,IIH  with respect to 1h  for a variation from %5 . 
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Figure 5. Sensitivities of the FRF ( )pT,ω,IIH  with respect to 3h  for a variation from %5 . 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 
(a) 

 
(b) 

Figure 6. Sensitivities of the FRF ( )pT,ω,IIH  with respect to 3θ  for a variation from %5 . 
 
Figs. 4 to 6 enable to evaluate the accuracy of the computed first-order derivatives that compare fairly well with 

finite differences. In addition, based on the amplitudes and sign of the sensitivity functions one can evaluate the degree 
of influence of the design variables upon the amplitudes of the FRF in the frequency band considered, being also a very 
tool for the design, performance analysis and optimization of composite structures. 

 
5.2. Composite sandwich plate with viscoelastic layer. 

 
The finite element discretization and the geometrical characteristics of the composite sandwich structure considered 

here is the same as depicted on Section 5.1, with the exception that the middle layer consists of the 3M™ ISD112 
viscoelastic material (see Section 4.2) with the thickness hv=8×h/5. The upper and the bottom layers have the same 
thickness and material properties characteristics of the laminated layers as presented in previously section.  

Figure 7 shows the normalized real and imaginary parts of the sensitivity functions of the FRF ( )pT,ω,IIH  with 
respect to nominal temperature value of 25ºC, as compared with the corresponding counterparts calculated by finite 
differences, using a variation from 5% of the nominal temperature value. Here again, the real and imaginary parts of the 
FRF, multiplied by a convenient scaling factor are also presented. Moreover, Fig. 7 enables to evaluate the accuracy of 
the computed first-order derivatives, as demonstrated by their agreement with the results obtained by the first-order 
finite differences. In addition, it is possible to evaluate the degree of influence of temperature variations within the 
frequency band of interest, and the influence of the variation interval on the computation of the sensitivity functions. 

 

 
(a) 

 
(b) 

 
Figure 7. Sensitivities of the FRF ( )pT,ω,IIH  with respect to temperature of the viscoelastic material for a nominal 

temperature of 25ºC – for a variation from 5%. 
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6. CONCLUDING REMARKS 

 
In this paper, the sensitivity analysis based on finite element models of composite sandwich plates containing 

viscoelastic materials is addressed. A parameterization-based formulation has been developed for the computation of 
first-order derivatives of FRFs with respect to two different kinds of parameters, namely: the physical and/or 
geometrical structural parameters, and temperature, which appear explicitly in the finite element matrices by performing 
the parameterization process. Applications have been made to rectangular composite sandwich plates though the 
method can potentially be applied to other types of structural components, which can be very convenient in a number of 
practical situations. As illustrated in the numerical applications presented, the sensitivities of complex FRFs convey 
valuable information about the influence of the design parameters on the dynamic behavior of the composite sandwich 
structures with viscoelastic layers, being also a very useful tool for the design, performance analysis and optimization 
and/or model updating.  

The use of the complex modulus approach, combined with the concepts of shift factor and reduced frequency - 
justified by the principle of superposition frequency-temperature - has shown to be an adequate strategy to account for 
the typical dependency of the viscoelastic characteristics with respect to frequency and temperature in the finite element 
models of complex composite sandwich plates with viscoelastic layers. However, the limitations of the first-order 
approximations in the prediction of response variations should be remembered.  
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