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Abstract. Die sinking electrical discharge machining (EDM) is a process widely employed for the manufacture of 

moulds and dies owing to the fact that the hardness of the work material do not affect the performance of the 

operation, albeit it may be influenced by the thermal and electrical conductivity and melting point of both electrode 

and work materials. Due to the high peak temperatures achieved during machining, defects on the workpiece such as 

cracks and heat affected zones are typically observed after EDM, therefore, the judicious selection of the machining 

parameters is critical for the success of the operation. The principal aim of this work is to investigate the influence of 

the process parameters (pulse duration, duty factor, current and electrode material) on the removed volume, tool wear 

and dimensional and geometrical deviations when die sinking EDM AISI H13 hot work die steel. In general, the results 

indicated that the elevation in pulse time resulted in lower removal rates, probably due to inefficient flushing of debris 

caused by the shorter time interval. Additionally, the orientation deviations and the cavity corner area and electrode 

corner wear were reduced, whereas the dimensional tolerance and surface roughness were elevated. The elevation of 

the duty factor promoted higher material removal, wider tolerances and larger cavity corner area and electrode corner 

wear, in addtion to lower surface roughness. Increasing electrical current resulted in higher volume removed and 

dimensional accuracy, together with a reduction in the angularity deviation, better surface finish and lower cavity 

corner area and electrode wear. Finish EDM promoted considerably lower removal rate together with better surface 

finish, lower tool wear and rounding of the cavity corner. The copper electrode provided removal rates slightly higher 

in comparison with the graphite electrode, however, the overall quality of the machined surface was superior using the 

graphite electrode. 
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1. INTRODUCTION 
 

Electrical discharge machining (EDM) is basically a process by which removal of workpiece material is achieved by 

sparks between a tool electrode and workpiece, with associated melting and vaporisation caused by high temperatures. 

The workpiece being machined and the tool electrode (usually made from graphite, copper or brass) are generally 

covered in a dielectric fluid and are connected to a direct current power supply (EDM generator) delivering periodic 

pulses of energy. There is no physical contact between workpiece and tool and the gap separating them is maintained 

under servo control. The physics of an EDM spark is so complex that Eubank et al. (1993) assert that it is impossible to 

provide a complete numerical solution, therefore, work must be focused on what is supposed to be the dominant effect. 

Furthermore, according to these authors, superheating (and not vaporization) is the dominant mechanism responsible 

spark erosion. 

EDM is used for machining electrically conductive workpiece materials that are difficult to cut with conventional 

processes such as turning, drilling and milling (e.g., hardened tool steels, nickel-based superalloys and titanium alloys). 

EDM is well suited to the production of components with complex geometry and is applied to a very wide range of 

operations including the manufacture of moulds and dies (e.g., plastic injection moulds, forging dies and die-casting 

dies), as reported by Niwa and Furuya (1995), surface texturing of steel rolls (Aspinwall et al., 1991), surface alloying 

(Uno et al., 1999), surface colouring (Minami et al., 2001), production of aircraft engine components (Aas et al., 2001), 

production of components for electronic industries (Rooij, 1995) and manufacture of components for dentistry (e.g., 

fixed-removable implant prostheses, titanium-ceramic crowns), Van Roekel (1992). 

There are different variations of EDM, all of which use the same physical principle. These processes are die sinking 

EDM (McGeough, 1988), wire EDM (Guitrau, 1997), micro EDM (Masuzawa, 2001), electrical discharge texturing 

(McGeough, 1988), electrical discharge grinding (Thoe et al., 1996) and EDM fast hole drilling (Sommer, 2000). 

However, the most used processes are die sinking and wire EDM.  

Die sinking EDM, also known as ram EDM, vertical EDM or plunge EDM, is generally used to produce blind 

cavities. The sparks along an electrode with the desired shape combined with the movement of the tool in relation to the 

workpiece produces a cavity in which the image shape of the tool is reproduced on the workpiece. Therefore, one can 
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infer that the dimensional and geometrical accuracy of the machined cavity depends on the accuracy of the electrode 

and on changes in the shape of the electrode, i.e., wear, taking place during the process. 

Electrode wear is influenced by a range of factors including electrode and dielectric materials, dielectric flushing 

(type, pressure and flow rate) dielectric condition (temperature and filtration), electrode rotation and generator 

parameters. These factors also affect other quality characteristics of the machined part such as surface roughness 

besides playing a fundamental role in the process performance. 

 

1.1 Electrode wear and geometrical accuracy 
 

The geometrical accuracy of the machined cavity can be affected by changes in the shape of the electrode during the 

machining process. The change in shape is most commonly associated with electrode wear. However, material that 

builds up in the electrode body during the process may also affect the geometrical accuracy. 

The most common type of wear takes place in the corner of the electrode (corner wear). This is undesirable as 

important shape details are not reproduced in the part. For instance, in case there is a requirement for machining flat 

bottomed (blind) cylindrical holes with sharp corner, corner electrode wear will affect the quality of the part. Likewise, 

tapered electrode wear will result in tapered holes, particularly when deep holes are produced. Patel et al. (1989) 

proposed an analytical model to predict the wear of copper electrode when EDM steel based on solving the partial 

differential equation which governs temperature distribution (unsteady-state heat conduction). 

Berkan (1983) associated corner electrode wear with the electrical fields that tend to be stronger in the vicinity of 

the surface edges which create better conditions for local discharges to occur. Mohri et al. (1995) observed that corner 

electrode wear is remarkably higher than longitudinal wear at the beginning of machining. This was associated with 

carbon (from the cracked oil-based dielectric fluid) attached to the bottom of the electrode but not to its edge portion. 

According to the authors the precipitation of carbon on the electrode surface tends to decrease wear.  

Tapered electrode wear occurs due to the lateral electrical discharges as a result of conductive particles (coming 

from the machined part or electrode) being flushed up the sides of the electrode (McGeough, 1988). Therefore, it is 

expected that flushing efficiency is an important aspect affecting tapered electrode wear. According to Wijers (1991), 

electrode rotation improves flushing and, consequently, reduces tapered wear. In addition to that, it has been reported 

that both electrode and dielectric materials can be important factors affecting tapered wear. Tsai and Masuzawa (2004) 

argued that electrode materials with high thermal conductivity (e.g., Ag, Cu) possess lower tapered wear than those with 

low thermal conductivity (e.g., Ti, Ni). Leão et al. (2005) found that brass electrodes can present very high tapered 

electrode wear when drilling deep holes in nickel alloys using deionised water as dielectric fluid. The authors observed 

significant reductions in tapered wear after using a water-based dielectric composed by alcohols and organic salts.  

Materials that build-up in the electrode surface during the machining process may also affect the geometrical 

accuracy of the part. These materials (present in the dielectric fluid) are composed by debris that comes from electrode 

and workpiece material and by the chemical decomposition of the dielectric. Li and Hon (1994) have shown that 

electrode build-up phenomenon depends on a combination of machining parameters (pulse duration, pulse interval, 

polarity and electrode material). Pulse duration is the most important factor when polarity is positive. The type of 

dielectric seems to be another important factor. Build-up of material was observed on the end of the electrodes when 

roughing machining workpiece material AISI H13 using hydrocarbon oil and graphite electrodes. The build-up material 

formed a ring at the electrode perimeter approximately 0.225 mm thick, thus affecting the geometrical accuracy of the 

workpiece. However, the author did not observe any material build-up after using a water-based dielectric and keeping 

constant other machining parameters. 

 

1.2 Generator parameters 
 

Besides geometrical accuracy, other quality characteristics specified for machined parts include dimensional 

accuracy and surface roughness. Both academic and commercial literatures report a strong correlation between the 

generators parameters (e.g., electrical current, voltage, pulse time, interval time and frequency) and the quality of the 

machined parts. Moreover, the generator parameters greatly affect the process performance in terms of cycle times and 

electrode wear. 

Electrical current is the primary source of heat in EDM and thus, the main parameter affecting material removal rate 

(both in the electrode and in the workpiece) and workpiece quality. If the value of current is set at 1 A, for instance, the 

cathode will emit 6.25 x10
18

 electrons per second. These electrons, travelling at the speed of light (Jameson, 2001), and 

the positive ions (travelling at a lower speed due to their higher mass) have their kinetic energy turned into heat when 

they collide with the surface of the electrodes. The heat generated is directly proportional to the value of electrical 

current. Higher values of current result in higher workpiece material removal rate at the expense of higher electrode 

wear, lower dimensional accuracy, thicker heat affected zone and higher surface roughness. However, an excessively 

high peak current decreases workpiece material removal rate as observed by some researchers, such as Lee and Li 

(2001) and Iwai et al. (2001). 
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There are two types of voltages in EDM: the high voltage and the machining voltage. High voltage or open circuit 

voltage is the difference in electric potential between electrode and workpiece that is responsible for the breakdown of 

the dielectric insulation; i.e.; the high voltage ionises the small gap that exists between electrode and workpiece so that 

sparks can occur. High open circuit voltage increases the gap width and overcut and, as consequence, decreases the 

dimensional accuracy. It also influences the amount of wear on the corners of the electrode tip, where the electric field 

is more intense (Lee and Li, 2001). Tsai et al. (2003) reported a drastic increase in material removal rate and electrode 

wear with the increase of open circuit voltage. However, it has been reported by Lee and Li (2001) that an excessively 

high voltage results in a steep fall in the material removal rate and considerable increase of relative electrode wear.  

After dielectric breakdown, the voltage applied between electrode and workpiece drops to the point where the 

electrical current reaches the maximum value and, as a consequence, the sparks attain their maximum power. The 

voltage remains constant during the occurrence of the sparks, i.e., during machining. This constant voltage is the 

machining voltage or the gap voltage. Singh et al. (1985) investigated the influence of gap voltage on EDM 

performance. They found that both workpiece and electrode erosion rates are higher for lower values of gap voltage. 

The pulse duration is the period in which sparking takes place (electric current flows in the machining gap) and 

material removal occurs. The higher the pulse duration, the higher the energy in the gap and thus, higher levels of 

material removal rate, overcut and heat affected zone will be obtained. A number of authors (DiBitonto, 1989; Lee and 

Li, 2001; Mohan et al., 2004; Spur and Schönbeck, 1993), have however, observed that material removal rate decreases 

if the pulse time is too high. Nevertheless, longer pulses are more beneficial for electrode wear (Amorim and 

Weingaertner, 2004). 

While sparking takes place during the pulse time, the pulse interval is the period in which the debris is removed 

from the gap by the implosion of gas bubbles and by the flushing action of the dielectric. The interval time depends, 

essentially, on the amount of debris to be removed, which is related to parameters such as peak current and pulse time 

(high peak current and pulse time values lead to high material removal rates and thus more debris). If flushing 

conditions are suitable (dielectric pressure is high enough), the pulse interval can be short, resulting in low machining 

cycle times. However, if the interval time is too short, DC arcing may take place due to insufficient gap deionisation 

(Luo, 1998). The excess of debris in the gap may also provoke short circuits. On the other hand, if the pulse time is too 

long, machining cycle time will increase. 

Frequency is the measure of the number of times the electrical current is switched on and off. It is the inverse of the 

total EDM unit pulse cycle (pulse time plus interval time). It has been reported (Singh et al. 1985; McGeough 1988; 

Storr, 1999) that low values of frequency result in high material removal rates, whereas high frequency results in low 

material removal rates with surface finish and higher electrode wear. 

 

1.3. Aims and objectives 
 

In order to achieve a satisfactory performance in EDM, electrode wear and machining time should be minimal. 

Moreover, the quality of the machined part should be in accordance with very strict specifications. However, lower 

machining time usually results in higher electrode wear and inferior quality of the machined part. These EDM process 

outputs depend on a number of factors and on a complex interdependence/interaction among these factors. The 

objective of this work is to investigate the effect of generator parameters and electrode material on the process 

performance and particularly on the quality of a hardened tool steel part machined using die sinking EDM. The quality 

characteristics that will be analysed are dimensional and geometrical accuracy and surface roughness  

 

2. EXPERIMENTAL PROCEDURE 
 

A bar of AISI H13 hot work die steel (243 mm x 262 mm x 23 mm) quenched and tempered to an average hardness 

of 45 HRC was used as work material. Electrolytic copper and graphite electrodes with dimensions of 20 mm x 20 mm 

x 50 mm were tested. The electrodes presented a cylindrical hole with ∅4 mm at the centre for delivering the dielectric 

fluid. As a consequence, the effective cross section area of the electrodes was approximately 387 mm
2
.  

The tests were carried out on a die sinking electrical discharge machine (Engemaq EDM 200NC series L) with 

maximum voltage of 300 V and maximum current of 60 A. Each test was performed using a fresh electrode, which was 

the positive pole. Hydrocarbon oil (Arclean Electron by Archem) was used as dielectric fluid. A portable roughness 

meter (Taylor-Hobson model Surtronic 25) with a stylus radius of 5 µm and set to a cut-off of 0,8 mm was employed to 

measure surface roughness parameters (average surface roughness Ra and maximum peak-to-valley roughness Rt). The 

dimensional and geometrical (orientation) deviations of the machined cavities were measured using a coordinate 

measuring machine (Tesa model Micro Hite 3D) with resolution of 1 µm and using a ruby probe with ∅2 mm. The 

wear on the electrodes was measured using a digital camera (Pixelink PL-A662 with resolution of 1280 x 1024 pixels) 

attached to a toolmaker’s microscope and connected to a computer equipped with a software for image processing 

(UTHSCSA ImageTool, release 3.0). 

The cutting conditions employed in the experimental programme are given in Tab. 1. They were selected based on 

the directions presented in the equipment manual and preliminary tests. Each test run was carried out during 15 minutes. 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

The influence of the principal EDM parameters, namely pulse time duration, duty factor, current, severity of the 

operation and electrode material can be assessed comparing different test runs. The influence of pulse length on 

removal rate, dimensional and geometric tolerances and tool wear can be estimated comparing the results from test runs 

3 and 5, nevertheless, these results must be analysed cautiously owing to the fact that duty factor was also altered with 

pulse length. Comparing test runs 2 and 5 one can assess the effect of duty factor and the influence of current can be 

analysed comparing the results from tests 2 and 4. A comparison between finishing and roughing conditions can be 

drawn observing the results related to tests 1 and 4 and the effect of the electrode material can be evaluated comparing 

test runs 2 and 6. At the end of all tests, the dimensions of the electrodes and cavities were measured. In order to 

measure surface roughness and rounding of the corners, the workpiece was cut using wire EDM, as indicated in Fig. 1. 

In the present work, the duty factor is calculated as the ratio of pulse length (pulse time on) to the sum of pulse 

length and time interval between two pulses (pulse time off). Alternatively, the ratio between pulse time on and off, 

known as duty cycle can be used. In both cases the relationship between pulse times on and off is taken into account, in 

contrast to the frequency, which can give identical values using rather distinct values of pulse time duration and interval 

and, therefore, cannot accurately represent the process. 

 

Table 1. Cutting conditions employed in the experimental work. 

 

Test run Electrode Pulse length 

ton (µs) 

Pulse interval 

toff (µs) 

Duty factor DT 

(ton/ton+toff)x100 (%) 

Current  

I (A) 

1 Graphite 100 12 89 6 

2 Graphite 200 17 92 36 

3 Graphite 300 192 61 36 

4 Graphite 200 17 92 51 

5 Graphite 200 300 40 36 

6 Copper 200 17 92 36 

 

 

 
 

Figure 1. Schematic diagram of wire EDM of the workpiece. 

 

No replicates were carried out during the experimental work. The seven machined cavities and corresponding 

electrodes were observed under the microscope in order to measure the deviations on the former and wear on the latter, 

as indicated in Fig. 2. As outputs, the following parameters were investigated: cavity depth, dimensional deviation 

(percentage difference between the dimensions of cross sections of the machined cavities and corresponding 

electrodes), geometrical deviations (orientation deviations of parallelism and angularity), surface roughness of the 

bottom of the cavities (average surface roughness Ra and maximum peak-to-valley roughness Rt), corner area at the 

bottom of the cavity not machined due to electrode wear and worn area at the corner of the electrode. Considering that 

the purpose of the evaluation of the cavity corner area and electrode corner wear was to confront the results obtained 

under distinct machining conditions, a non-dimensional unit was employed, indicated as an asterisk (*). Each output 

was measured twice and the average values were used to plot the graphs related to each machining condition. 
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(a) Schematic of the workpiece   (b) Schematic of the electrode 

 

 
 

(c) Workpiece photograph    (d) Electrode photograph 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
Figure 2. Schematic diagrams representing the cavity dimensional deviation (Fig. 2a) and electrode wear (Fig. 2b) 

and photographs of the cross section of the cavity (Fig. 2c) and electrode wear (Fig. 2d). 

 

3. RESULTS AND DISCUSSION 
 

Figures 3 to 7 present the influence of the principal EDM parameters on the performance of the operation. The effect 

of pulse length (test runs 3 and 5) is given in Fig. 3, where it can be seen that increasing pulse duration from 200 to 300 

µs leads to a reduction in the machined depth (removal rate), parallelism and angularity deviations and both workpiece 

corner area and electrode corner wear. In contrast, dimensional deviation and surface roughness values were increased. 

An increase in pulse duration while the remaining parameters are kept unaltered means that the energy for material 

removal is available for a longer period. As a consequence, the material removal is expected to increase and wider 

tolerances and rougher machined surface should be obtained. In addition to that, lower tool wear rate should be 

observed (Patel et al. 1989; Benedict, 1987 and McGeough, 1988). The results presented in Fig. 3 agree fairly with 

theory, except for machined depth. One possible reason for that may be the fact that in order to increase pulse duration, 

the duty factor was elevated from 40 to 61%. Therefore, the time interval (pulse time off) required for flushing the 

debris away from the cutting zone was reduced from 300µs (test run 5) to 192 µs (test run 3). As a consequence, 

inefficient flushing may have occurred, leading to the elevation of the gap voltage and the retraction of the servo system 

until the gap is clear and infeed is resumed. Furthermore, Patel et al. (1989) report that the flushing efficiency is not 

affected by pulse length, depending mainly on electrical current. 
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Figure 3. Effect of pulse duration on the performance of electrical discharge machining of H13 tool steel  

with graphite electrode (I=36 A). 

 

Figure 4 shows the effect of duty factor on the performance of the EDM of AISI H13 tool steel with a graphite 

electrode. In opposition to the previous results, in this case the remaining parameters, including pulse length, were 

unchanged (see Tab. 1, test runs 2 and 5). The results indicate an elevation in the material removal (machined depth) as 

the duty factor is elevated owing to the increase in the discharge frequency from 2000 Hz to 4608 Hz. As a result from 

the higher material removal, wider tolerances and an increase in the cavity and electrode areas are obtained. 

Interestingly, better surface finish was obtained, as reported by McGeough (1988). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effect of duty factor on the performance of electrical discharge machining of H13 tool steel  

with graphite electrode (ton=200 µs and I=36 A). 

 

Figures 5 and 6 show, respectively, the findings concerned with the influence of electrical current and cutting 

condition (finishing or roughing) on the performance of the operation. The elevation of current from 36 to 51 A (test 

runs 2 and 4) results in higher energy concentration, therefore, higher removal rate and tool wear are expected together 

with wider tolerances. These findings agree with Patel et al. (1989), who compared the theoretical and experimental 

influence of current on removal rate and found similar results when EDM steel with copper electrode employing current 

values from 2.64 to 68 A. Observing Fig. 5 it can be noticed that in spite of a moderate increase in the dimensional 

accuracy and material removal, opposite results were obtained for the other characteristics, i.e., a sharp reduction in the 

angularity deviation was reported, together with an unexpected decrease in the values of roughness and areas of the 

cavity and electrode. Furthermore, test run 4 represents the highest material removal rate (162 mm
3
/min) obtained when 

EDM H13 tool steel with graphite electrode. 

 

ton=200µs 5.89 1.28 0.41 8.96 7.20 3.70 2.77 1.77

ton=300µs 4.94 1.39 0.29 3.47 8.50 6.20 1.05 0.90

Depth (mm)

Dimensional 

deviation 

(%)

Parallelism 

(mm)

Angularity 

(1/10000)
Ra (µm)

Rt (x10-1 

µm)

Workpiece 

corner area *

Electrode 

worn area *

DT=40% 3.18 0.93 0.48 3.52 11.70 6.00 1.61 0.91

DT=92% 5.89 1.28 0.41 8.96 7.20 3.70 2.77 1.77

Depth (mm)

Dimensional 

deviation 

(%)

Parallelism 

(mm)

Angularity 

(1/10000)
Ra (µm)

Rt (x10-1 

µm)

Workpiece 

corner area *

Electrode 

worn area *



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of current on the performance of electrical discharge machining of H13 tool steel  

with graphite electrode (ton=200 µs and DT=92%). 

 

Comparing finish and rough EDM operations, see Figure 6 (test runs 1 and 4), it can be noted that when roughing 

parameters are selected the machined depth (material removal) increases drastically owing to the energy available for 

melting and vaporizing the work material. Consequently, poorer surface finish is obtained, as indicated by the Ra and Rt 

values. In addition to that, higher tool wear is observed and, as a result, the rounding at the bottom of the cavity is 

increased. Nevertheless, tighter dimensional and geometric deviations were obtained under the roughing condition. It is 

important to point out that when switching from finish to rough EDM all three parameters (pulse duration, duty factor 

and current) are changed, therefore, the effect of each factor cannot be assessed separately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Effect of the cutting condition on the performance of electrical discharge machining of H13 tool steel  

with graphite electrode. 

 

Finally, the results related to the influence of the electrode material on the performance of the operation are 

presented in Figure 7 (test runs 2 and 6). These findings suggest that the copper electrode provides superior material 

removal (machined depth) together with tighter angularity deviation, whereas the graphite electrode was responsible for 

closer dimensional and parallelism deviations, lower surface roughness and smaller workpiece corner area and electrode 

corner wear. According to McGeough (1988), copper electrodes allow high material removal rates and are highly stable 

in sparking, providing, for some work materials, superior surface finish than graphite. In the present work, the highest 

material removal rate (187 mm
3
/min) was obtained using the copper electrode (test run 6), in spite of the fact that a 

considerably lower current was employed in comparison to test run 4 carried out using graphite electrode (36 A against 

51 A). On the other hand, the higher melting point of graphite results in lower electrode wear.  

 

I=36A 5.89 1.28 0.41 8.96 7.20 3.70 2.77 1.77

I=51A 6.27 1.35 0.32 0.17 5.90 3.15 2.46 0.66

Depth (mm)
Dimensional 

deviation (%)

Parallelism 

(mm)

Angularity 

(1/10000)
Ra (µm)

Rt (x10-1 

µm)

Workpiece 

corner area *

Electrode 

worn area *

Finishing 0.51 3.20 0.59 7.37 5.30 2.70 0.58 0.51

Roughing 6.27 1.35 0.32 0.17 5.90 3.15 2.46 0.66

Depth (mm)

Dimensional 

deviation 

(%)

Parallelism 

(mm)

Angularity 

(1/10000)
Ra (µm)

Rt (x10-1 

µm)

Workpiece 

corner area *

Electrode 

worn area *

Finishing: ton=100 µs, DT=89% and I=6 A 

Roughing: ton=200 µs, DT=92% and I=51 A 
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Figure 7. Effect of the electrode material on the performance of electrical discharge machining of H13 tool steel 

(ton=200 µs, DT=92% and I=36 A). 

 

4. CONCLUSIONS 
 

After conducting die sinking electrical discharge machining tests on hardened AISI H13 tool steel using graphite 

and copper electrodes under various machining conditions, the following conclusions can be drawn: 

• An increase in pulse time resulted in lower removal rates, probably due to inefficient flushing of debris caused by 

the shorter interval time. Additionally, the orientation deviations and the cavity corner area and electrode corner wear 

were reduced, whereas the dimensional tolerance and surface roughness were elevated. 

• The elevation of the duty factor promoted higher material removal, wider tolerances and larger cavity corner area 

and electrode corner wear. Moreover, lower surface roughness was obtained. 

• With regard to the electrical current, its elevation from 36 to 51 A promoted a slight increase in removed volume 

and dimensional accuracy, together with a reduction in the angularity deviation, better surface finish and lower cavity 

corner area and graphite electrode corner wear. 

• Using the finish EDM condition considerably lower removal rate is obtained in addition to lower surface roughness, 

lower tool wear and rounding of the cavity corner, albeit wider dimensional deviations were produced. 

• The copper electrode provided removal rates slightly higher in comparison with the graphite electrode, however, the 

quality of the machined surface assessed in terms of roughness and dimensional and parallelism deviations was superior 

when the graphite tool was employed. 
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