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Abstract. The flow field around a thin flat plate with a leading edge and an infinite wingspan at small incidences is a 
very complex flow due to the existence of laminar-to-turbulent transition, boundary layer separation, leading edge 
bubble and reattachment. Due to the flow complexity, its numerical prediction represents a considerable challenge. 
Therefore, the purpose of this study is the evaluation of turbulence models to predict  this flow The solutions are 
obtained through the Reynolds Averaged Navier-Stokes (RANS) equations for the two-dimensional steady state flow, 
using the SST κ−ω 2-equations model and the more complex Reynolds Stress Tensor Model (RSM). The SST κ−ω 
assumes isotropic modeling of the Reynolds tensor and fails to reproduce some important features of this particular 
flow. To account for the anisotropy, the Reynolds Stress Tensor Model (RSM) solves an additional set of transport 
equations for the Reynolds stress tensor, which provides better results for both first and second order statistics, but 
introduces an anomalous flow pattern in the reattachment region, demands an increase in computational cost and 
produces convergence difficulties. Due to these difficulties, this work also presents the solution obtained with Large 
Eddy Simulation (LES) for the three-dimensional unsteady state flow, which provided considerable improvements  in 
the results. Simulations were accomplished for 1 degree inclination angle of the flat plate with a Reynolds number of 
2.13 × 105. The results are compared with available wind tunnel experimental data. 
 
Keywords: flat plate, shallow incidence, RANS, LES, reattachment. 

1. INTRODUCTION  

The objective of the present work is to analyze the incompressible turbulent flow around a thin flat plate with a leading 
edge and an infinite wingspan at small incidences. The simulations were accomplished with models based in the Reynolds 
Average Navier-Stokes equations (RANS) and Large Eddy Simulations (LES), with high Reynolds number. The performance 
of the turbulence models is evaluated by comparing with Crompton’s experimental data (Crompton, 2001), which provides 
information regarding the flow around the thin flat plate,  with incidence angles α varying from 1o to 5o and Reynolds number 
Re = 2.13 ×105. This type of problem poses a challenge to the ability of the turbulence models to predict the flow, due to the 
presence of several flow structures. Therefore, a few works can be found in the literature, employing the same flow conditions 
and geometry as Crompton (2001) like Collie et al. (2008), Sampaio et al. (2006) and Rezende & Nieckele (2007) and 
Rezende et al. (2008).   

Collie et al. (2008) investigated the flow considering incidence angles α  equal to  1o and 3o, with  the following  
two equation turbulence RANS models: ωκ −  (Wilcox,1998) and SST κ−ω (Menter, 1994).  A two dimensional 
domain was considered and it was concluded that the SST κ−ω model provided the best results.  

Rezende and Nieckele (2007) analyzed the flow for inclination angles α  equal to  1o, 3o and 5o.  The flow was also 
considered as 2D, but a finer mesh was employed with the one-equation Spalart-Allmaras model  (Spalart & Allmaras, 
1992) and SST κ−ω model (Menter, 1994).  The Spalart-Allmaras model demonstrated certain deficiency in its 
predictions, in spite of being projected for aerodynamic applications. The results obtained with the SST κ−ω model 
were superior to Collie et al. (2008) results, due to the mesh refinement.   

The Reynolds Stress Model - RSM (Launder, 1989) and the v2f model (Durbin,1995) were employed by Rezende et 
al. (2008) to capture the turbulence anisotropy, for α  = 1o. Better predictions were obtained with the RSM model only 
for the second order statistics, while poor results were predicted with the v2f model, especially for high Reynolds 
numbers.   

Sampaio et al. (2006) examined the problem with a 3D transient formulation through the Large Eddy Simulations 
(LES), with the traditional one-equation model (Kim and Menon, 1997) and with an alternative subgrid approach, 
named f-LES (Sampaio, 2006). Due to computational restrictions, Sampaio et al. (2006) investigated the inclination 
angle α  =  1o  in a reduced domain and relatively coarse mesh. Although better results were obtained in relation to the 
RANS models predictions, it was concluded that a more refined mesh was needed.   

Based on the results and conclusions of the previous papers, this work presents the numerical results for α  =  1o   using 
three different methodologies: SST κ−ω model, RSM model and LES. The mesh was significantly refined mesh, in order 
to guarantee y+ ≈ 1 at the first grid point near the plate. The SST κ−ω model was selected because it presented the best 
result with the RANS methodology in previous investigations, while the second order RSM model was selected since it is 
capable of predicting flow anisotropy. Finally, the LES model with the Dynamic Smagorinsk sub-grid  model (Germano et 
al., 1991; Lilly, 1992) was investigated, once Sampaio et al. (2006) have declared the need of refined mesh.  
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2. FLOW OVER A THIN FLAT PLATE 

Understanding the flow around the thin flat plate at shallow incidence can help in the design of airfoils and sails as 
well as flexible wing-based micro air vehicles. The flow around an inclined flat plate with a sharp leading edge, as 
shown in Fig. 1, induces a long and thin bubble, denominated “thin aerofoil bubble”. At zero incidence angle, the 
stream is laminar and attached on both sides, generating zero lift (assuming equal surface profiles). If the plate has an 
incidence angle, the stagnation point moves to the inferior surface. The boundary layer around the leading edge is very 
thin, and it is expected to separate immediately, due to the flow direction change. As shown in Fig. 1, there is a dividing 
streamline which separates the bubble from the outer flow and which rejoins the surface at the reattachment point. If the 
incidence angle is sufficiently small (usually smaller than 7 degrees), the flow reattaches at the upper surface at a point 
which moves gradually downstream with increasing incidence angle. For greater angles, there is no reattachment point, 
and the bubble enlarges downstream into the wake (Newman and Tse, 1992). Due to the fixed separation point the flow 
is insensitive to a change in Reynolds number, and transition will occur soon after separation (Crompton, 2001). 

 

Figure 1. Simplified model of a thin aerofoil separation bubble. 

Subsequent to separation, the shear layer suffers transition very close to the leading edge. The turbulent shear layer 
increases quickly and has a high entrainment rate; it then reattaches further downstream and bifurcates. Part of the flow 
is directed to upstream to feed the shear layer. The resultant backflow reduces the pressure at the surface and helps to 
bend the shear layer back to the reattachment point. The remaining flow is driven downstream where reverts gradually 
to an attached turbulent boundary layer before reaching the trailing edge (assuming there is enough length left after 
reattachment). 

This complex flow around a plate at the shallow incidence has been experimentally investigated by Crompton 
(2001). Detailed velocity and turbulence statistics were measured in wind tunnel for the leading edge bubble with the 
use of Laser Doppler Anemometry (LDV) for inclination angles of the flat plate varying from 1 to 5 degrees with a 
Reynolds number based on the chord c equal to 2.13 × 105.  

3. MATHEMATICAL MODEL 

The equations that describe the incompressible fluid movement are the continuity and momentum equations, 
respectively 
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where ui is velocity vector, ρ is the density, υ=µ/ρ is the cinematic viscosity, µ is the molecular viscosity, p is the 
pressure and gi is the acceleration of gravity. 

The Reynolds-averaged approach is based on decomposing the velocity as '
iii uuu +=  where iu is the average 

velocity vector and '
iu  the velocity vector fluctuation. The average continuity and momentum equation (RANS), for a 

steady state incompressible flow is given by  
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Equation (2) has the same form of the Navier-Stokes equation, but now it has an additional term, the turbulent 
Reynolds stress term, ji uu ′′− , representing the influence of the fluctuation on the average flow. In order to close Eq. (2), 
the turbulent Reynolds stress must be determined. It can be directly modeled through the solution of its conservation 
equation, with corresponds to the Reynolds Stress Models (RSM), or it can be modeled by employing the Boussinesq 
hypothesis, based on the turbulent viscosity concept. With the Boussinesq hypothesis, the turbulent stress is obtained 
through an analogy with Stokes law, i.e., the stress is proportional to the mean deformation rate,  
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where ijS  is the average deformation rate, κ  is the turbulent kinetic energy and υt  = µt / ρ , where µt is the turbulence 
viscosity, which is defined in accordance with the models. 

In the Large Eddy Simulation (LES) approach the governing equations are derived through the application of a 
spatial operator filter in the continuity and momentum equations, Eq. (1). The spatially-filtered Navier Stokes for an 
incompressible now can be written as: 
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where iu  and p  are the filtered velocity and pressure and τij is the sub-grid tensor. The subgrid tensor is the result of 

commuting the filtering with the outer product and is defined as jijiij uuuu −=τ . A closed expression cannot be 
found for this subgrid tensor, and hence it must be separately modeled. In this investigation, ijτ is modeled based on 
the Boussinesq hypothesis 
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where SMυ  is the turbulent subgrid viscosity, which was modeled with the Dynamic Smagorinsk subgrid model 

(Germano et al., 1991; Lilly, 1992), and ijS  is the filtered deformation rate. 

3.1. SST  k-ω Model 

The Shear-Stress Transport (SST) κ−ω  RANS model (Menter, 1994) was proposed for aeronautical flows 
simulations with strong adverse pressure gradients and separation by combining the κ−ε and κ−ω models. For boundary 
layers flows, the κ−ω model is superior to the κ−ε  model in the solution of the viscous near-wall region, and has been 
applied with success in problems involving adverse pressure gradients. However, the κ−ω model requires a non-zero 
boundary condition on ω for non-turbulent free-stream, and the calculated flow is very sensitive to the specified value 
(Menter, 1994). It has also been shown (Cazalbou et al , 1993) that the κ-ε model does not suffer this deficiency. 
Therefore, the SST κ−ω model blends the robust and precise formulation of the κ−ω model close to walls with the free-
stream independence of the κ−ε model outside the boundary layer. To accomplish this, the κ−ε  model is written in terms 
of the specific dissipation rate, ω. Then, the standard κ−ω model and the transformed κ−ε model are both multiplied by a 
blending function and both models are added together. This blending function F1 is zero (leading to the standard κ−ω 
model) at the inner edge of a turbulent boundary layer and set to a unit value (corresponding to the standard κ−ε model) at 
the outer edge of the layer.  

The turbulent eddy viscosity is formulated as follows: 
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where  S = ( 2 ijS  ijS )0.5  is the modulus of the mean rate-of-strain tensor ijS , and F2 is the blending function for the 

turbulent eddy viscosity in the SST κ−ω model, d is the distance to the wall. The turbulent kinetic energy κ and specific 
dissipation rate ω of the SST κ−ω model (Menter, 1994) can be determined by the solution of its conservation equations, 
where the set of closure constants for the SST κ−ω model φ are calculated using a blend between the constants φ1 of the 
standard κ−ω and and φ2 of the κ−ε model as φ =F1 φ1 +(1 - F1) φ2. 

3.2. The Reynolds Stress Model  (RSM) 

The turbulence models based in the Boussinesq hypothesis represent a consolidated solution for the turbulence 
closure problem in the RANS models. However, in spite of recognized success in the solution of several turbulent 
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flows, such models present some deficiencies, usually associated to the limitations imposed by the concept of turbulent 
viscosity. The flows with strong turbulence anisotropy behavior are typical examples in which the Boussinesq 
hypothesis fails. An alternative for the closure problem consists in the direct solution of the transport equations for 
Reynolds Stresses (Reynolds Stress Model - RSM). Such closure models are called second order models (Launder, 
1989). The Reynolds stress transport equation can be derived from the Navier-Stokes equation, being equal to 
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The first term of the right side is the diffusion rate (Lien and Leschziner, 1994) and the second is the production 
term (Launder, 1989). The term ε  is the viscous dissipation calculated through its transport equation (Hanjalic, 1994), 
as in the εκ −  model, σκ=1 is an empirical constant. 

The pressure term Φij involves correlations between pressure fluctuations and deformation rates. This term is not 
present in the turbulent kinetic energy equation, therefore it does not contribute to the total energy balance. It only acts 
to redistribute the energy among the normal components of the Reynolds stress (when i= j)  and to reduce the shear 
stress (when i ≠ j). Thus this term tends to turn the turbulence more isotropic.  Modeling the Φij term has been object of 
several works, representing a central theme in the development of those second order closure models. In the present 
study, the pressure term is modeled through the LRR modified model (Launder, Reece & Rody, 1975; Gibson and 
Launder, 1978), which includes an additional term for the redistribution of normal stress close the wall. This extra term 
damps the normal stress to the wall, while increases the shear stress parallel to the wall.  

The RSM model was initially developed for turbulent flows without the influence of the wall, therefore it is 
necessary to define a specific treatment for this model at the near wall region area, especially because the present mesh 
was defined very fine, such that near the wall y+ ≈ 1, where y+ = ρ d u* / µ , with  u* = (τw/ρ)0.5 as the friction velocity, d 
as the distance from the wall and τw as the wall shear stress. In accordance with Chen and Patel (1988), to simulate the 
flow behavior close the wall (y+ ≈ 1) with the RSM model, the whole domain must be subdivided in two areas. The first 
area is located close to the wall and is affected by the fluid viscosity. The other area, denominated totally turbulent, is 
located far from the wall. The definition of the two areas is determined through the wall Reynolds number                       
Rew = ρ d κ0.5 / µ. In the totally turbulent region (Rew > 200), the flow is solved by the RSM model as described.  In the 
region close the wall (Rew ≤ 200) the Wolfshtein model (Wolfshtein, 1969) is applied.  

3.3. Large Eddy Simulation - Dynamic Smagorinsk Model 

The Dynamic Smagorinsk subgrid viscosity model selected to be investigated in the present paper is based on the 
Smagorinsly-Lilly Model (Germano et al., 1991; Lilly, 1992), where the sub-grid eddy-viscosity is  
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where ijS  is the filtered deformation rate( Eq. 5),  Ls is the mixing length for subgrid scales, and kν  is the von Kármán 

constant, d is the distance to the closest wall, Cs is the Smagorinsky constant and ∀ is the volume of the computational cell. In 
the dynamic approach, the Smagorinsky constant Cs is dynamically computed based on the information provided by the 
resolved scales of motion. Although, Cs can vary in time and space, to avoid instability it was clipped at zero and 0.23. 

4. RESULTS   

The thin flat plate investigated experimentally by Crompton (2001) was modeled with the geometry described in 
Fig. 2. The plate has a chord length c equal to 160 mm and a span of 800 mm giving an aspect ratio of 5, which is 
sufficient to supply nominally two-dimensional flow.  

The wind tunnel investigation was carried at Re = 2.13 × 105, where Re is defined as Re= U∞ c /υ, U∞  is the free 
stream velocity, and c the chord length. LDV measurements for the mean velocity and a few turbulent quantities over 
the plate are available at Crompton´s study (2001), for attack angles α, varying from 1 to 5 degrees, in 1 degree 
intervals.  

The same Reynolds number Re = 2.13 × 105 and an inclination angle equal to 1o was employed to compare the 
turbulence models results with Crompton´s experimental data. 

Figure 3 shows the computational domain used in simulations, which was defined based on the work of Collie et al. 
(2008). At the inlet, the cartesian components of velocity are set according to the angle of attack and the free-stream 
turbulence intensity defined as 22 3231 ∞∞ =′′+′′+′′= UUwwvvuu /)/(/))(/( κς  is set as 0.05%, as measured in the wind 
tunnel (Crompton, 2001). Constant pressure equal to the free stream p∞ is set at the outlet. 
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Figure 2. Thin flat plate dimensions. 
 

Figure 3. Domain details. 
 

The plane mesh for RANS models was created in the software GAMBIT with 149 389 cells, a slightly larger number of 
points than employed by Collie et al. (2008), based on a grid convergence study performed by him. The maximum mesh 
expansion rate was kept below 1% in the region around the plate, while in the rest of the computational domain, away from 
the plate, a value of 5% was allowed. The distance of the first node above the plate was designed as 6.25 × 10-5 c to 
guarantee y+ around 1, which is the value indicated for both SST κ−ω and LES.  

To obtain the three-dimensional mesh for LES, the plane mesh for RANS was expanded in the spanwise direction 
(perpendicular to the plan of the Fig. 3), with length 0.25 c and divided in 16 parts generating a mesh with 2 390 324 
control volumes, as recommended by Sampaio (2006), who investigated the correlation length in the spanwise 
direction. The boundary condition in the spanwise direction was set as periodic.     

To flow field was determined with the commercial software Fluent with all models described in section 2. This code 
is based in Finite Volume Method. The interpolation scheme for RANS simulations was the QUICK scheme, while for 
LES, the Central-Differencing scheme was used. The pressure-velocity coupling was handled by the SIMPLE and PISO 
algorithms, respectively, for RANS models and LES simulations. The system of algebraic equation was solved with the 
Additive Multgrid method. The problem was considered converged when the maximum residue of all equations was 
smaller than 10-6.  

4.1. Reattachment length 

Due to the abrupt geometry at the leading edge, separation of the boundary layer  occurs and a long and thin bubble 
is created. Since the inclination angle is positive, the stagnation point is located below the surface of the plate and due to 
the high inertial forces (high Reynolds number) the particles do not follow the abrupt curvature of the extremity and 
separation occurs. The separated shear layer is unstable and transition rapidly occurs. After transition, a rapid 
development of the shear layer occurs due the high rate of turbulence entrainment, which bends the streamlines toward 
the surface of the plate at the reattachment point XR. Now, due to the favorable pressure gradient existent between the 
larger pressure point in the reattachment point and the minimum pressure point close to the bubble center, the portion of 
the flow that goes back to the leading edge suffers a relaminarization process. The boundary layer of this portion of the 
flow moves forward to the leading edge becoming again laminar and ready to suffer a second separation, generating a 
secondary recirculation bubble, since there is another adverse pressure gradient at the minimum pressure point in the 
center of the bubble to the leading edge. This second very small bubble is very hard to be predicted, and it was only 
observed with LES Dynamic model. 

Table 1 presents the reattachment lengths (XR) for the flat plate at 1o incidence angle, obtained by the present work. 
The results obtained by Collie et al. (2008) with the κ−ω and SST κ−ω models employing the CFX software are also 
presented. Sampaio et al. (2006) investigated the same problem with the traditional one-equation model (Kim and 
Menon, 1997) and with the f-LES methodology (Sampaio, 2006), and obtained better results with the latter formulation, 
which is also present at Table 1.  

The accuracy of the prediction of the reattachment lengths for this flow is strongly dependent on the ability of the 
turbulence model to represent the complex flow structure described; however the mesh refinement also plays a crucial part 
on this performance. It can be seen in Table 1, that the worse prediction was obtained with κ−ω model due to its deficiency 
in accurately predicting the free stream flow. Although the Spalart-Allmaras model predicted a better result than the κ−ω 
model, Rezende & Nieckele (2007) showed that this model is not able to predict the normal turbulent fluctuations. Since 
the SST κ−ω model blends the precise formulation of the κ−ω model close to walls with the free-stream independence of 
the κ−ε model outside the boundary layer, smaller errors in the Xr values were obtained. Note the improvement in the 
result reached here with the SST κ−ω model in relation to the one obtained with the same model by Collie et al. (2008), 
which shows the influence of a more refined mesh. Note also that, while the SST κ−ω models overestimated the XR value, 
the model RSM underpredicted this value, but with a smaller error, since it is capable of representing the flow anisotropy 
which is fundamental to the accurate predictions of the thin bubble at the plate leading edge. Finally, it is evident in           
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Table 1 that the LES Dynamic model, with more refined mesh, provided the best result, not only because it can capture the 
large structures, but also the transfer of energy between scales and its dissipation at the small scales. The prediction of the 
f-LES methodology was equivalent to the RSM prediction, due to the relatively course mesh employed in that work. It is 
believed that with a more refined mesh the f-LES model will present more accurate results. 

Table 1 – Normalized reattachment lengths (XR) and respective errors. 
 Experimental 

Crompton  
(2001) 

LES 
Dynamic 

SST 
κ−ω 

RSM SA  
Rezende & Nieckele  

(2007) 

κ−ω  
Collie et al. 

(2008)

SST  
Collie et al. 

(2008) 

f-LES 
Sampaio et al. 

(2006) 

XR / c  0.1400 0.1409 0.1456 0.1370 0.1520 0.1840 0.1490 0.1359 

Error %  0.64 3.85 2.21 8.35 24.0 5.80 3.00 

4.2. Mean velocities profiles  

The mean velocities profiles obtained with SST κ−ω, RSM and LES Dynamic models are compared with the 
experimental data de Crompton (2001) at four stations. Figure 4 corresponds to the station x/c = 0.031 inside the bubble, 
where in Fig. 4b a zoom in the near wall region is shown. Figure 5 presents the velocity profiles for the remaining 
selected stations. Those stations are: x/c = 0.125, also located inside the bubble, while x/c = 0.250 and x/c = 0.375 
stations are outside the bubble.  

By examining Figs. 4 and 5, it can be seen that in general, the LES results showed an excellent agreement with the 
experimental data, especially when compared with the results of SST κ−ω and RSM simulations.  
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Figure 4. Mean velocity profile inside the leading edge bubble.  
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Figure 5. Mean velocities profiles at three stations.  

The reversed flow inside the leading edge bubble experiences relaminarisation and the boundary layer begins to 
show very laminar features. Note in Fig. 4b (x/c = 0.031) that only the LES Dynamic model was able to predict this 
behavior, presenting a very good agreement with the experimental data. By examining Fig. 5, it can be seen that both 
RANS model showed a more smooth profile near the wall after the reattachment point, in the boundary layer 
developing region, indicating that the model is less diffusive. Note also, that although the Xr prediction of the RSM 
model was superior to the SST κ−ω prediction, the mean velocity profile presents the worst agreement with the 
experimental data. 

Figure 6 shows the streamlines for the LES Dynamic, SST κ−ω and RSM models, close to the leading edge, in the 
region of the main recirculation bubble. It can be verified that only the LES model was able to predict the second 
recirculation bubble, which is observed experimentally. The absence of the secondary bubble in the RANS predictions 
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is directly related to the more turbulent velocities profiles foreseen by those simulations, inducing the flow inside the 
bubble to be more resistant to the second separation, keeping the reverse boundary layer attached to the plate inside the 
main bubble. 
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Figure 6. Streamlines for the LES Dynamic, SST κ−ω and RSM models. 
 

By examining Fig. 6c corresponding to the RSM model predictions, an anomalous behavior of the flow can be seen 
near the reattachment point. Note that the streamline, which divides the main flow from the bubble flow, bends back to 
reattachment point due to the existence of folds in the velocities profiles close the wall. This is a spurious result, which has 
already been observed by Hanjalic and Jakirlic (1998), when examined the backstep flow case with the RSM LRR model. 
This behavior is intensified, especially when refined meshes are employed, even when using the wall treatment mentioned 
in the section 2.2, as is the case of the present paper. In less refined meshes cases, the use of the logarithmic wall law 
masks this anomaly. There are several possible causes for this problem, including numerical error and wall law 
inadequacy; however Hanjalic and Jakirlic (1998) concluded that, without identifying the specific source of the spurious 
result, the model was inadequate to be used in the presence of boundary shear layer flows. Lasher and Taulbee (1992) 
attributed the cause of the problem to the coefficients for the pressure term Φij  of the LRR model and to the viscous 
dissipation model ε (section 2.2).    

Aiming to identify the cause of the problem just described, the RSM model was also tested with two different 
treatments for the near wall region, without employing the LRR model for the pressure term. The first one is the RSM SSG 
model (Speziale et al., 1991) that adopts a quadratic model for the pressure term; and the second one is a model that blends 
RSM and κ−ω models near the wall (Wilcox, 1998). However, convergence was not attained with either model. This 
convergence difficulty is described explicitly in the Lasher and Sonnenmeier (2008) work, who were only able to obtain 
converged solution when adopted the first order Upwind interpolation scheme for the advective terms. Fadai-Ghotbi et al. 
(2008) also mentions this convergence problem in their transient simulations (URANS - Unsteady Reynolds Averaged 
Navier-Stokes). They also employed the first order Upwind interpolation scheme to obtain convergence, which introduced 
false diffusion, damping the fluctuations, and as a result the same profiles as the steady state RSM solution were obtained. 

4.3. Pressure distributions 

The pressure distribution can be analyzed through the pressure coefficient defined as 

)./()( 250 ∞∞−= UppCP ρ         (9) 

where p is the static pressure, p∞ and U∞ are the freestream pressure and velocity.  
Figure 7a presents the pressure contour near the leading edge. The stagnation point in the lower side of the plate can 

be clearly seen. A visible suction can also be seen inside the bubble region, in the upper side of the plate, by the 
significant pressure reduction. After the reattachments point, the pressure is approximately constant. Figure 7b 
illustrates the pressure coefficient along the plate. Again the SST κ−ω, RSM and LES Dynamic models are compared 
with the experimental data. Excellent prediction was obtained with the LES Dynamic model, which reproduced the 
experimental data, because it was able to capture the second recirculation bubble. Smaller suction was predicted by both 
RANS models. The lack of the second bubble prediction leads the SST κ−ω  model to anticipate the pressure recovery. 
The anomalous flow behavior at the reattachment region, seen with the RSM model, reflected on the pressure 
distribution, resulting in a smaller peak and smoother drop.  

4.4. Turbulent quantities 

The turbulent axial second order statistics uu ′′  predicted with SST κ−ω, RSM and LES Dynamic models are 
compared with the experimental data in Fig. 8 for incidence angle α  =  10.  
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Figure 7. Pressure distribution.  

Analyzing the graphs in Fig. 8, it can be seen that turbulence is generated in the recirculating zone, inside the 
leading edge bubble. As one moves along the plate, the turbulence intensity decreases, but the region affected by 
turbulence gets wider. Once again the agreement of the LES Dynamic model results with the experimental data is very 
good, not only inside the bubble but also after the reattachment point. The RSM model was able to predict the same 
level of turbulence intensity, but it underestimates uu ′′ near the reattachment point (Fig. 8b) and overestimated it after, 
at stations x/c = 0.250 and 0.375 (Figs. 8c and d). In spite of the spurious results near the reattachment point, reasonable 
results were obtained with RSM since uu ′′  is determined from its transport equation, i.e., it involves less modeling than 
the SST κ−ω model.  
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Figure 8. Axial second order statistics uu ′′ .  

The SST κ−ω model calculates uu ′′  through Eq. (3), with the turbulence viscosity obtained by blending the 
standard κ−ω  in the near-wall region with the standard κ−ε  model across the outer region. Figure 9 illustrates the 
viscosity ratio υt/υ, for the SST κ−ω model along the plate, showing the peak of turbulent viscosity at the bubble region 
center (x/c ≈ 0.05, as shown in Fig. 6b). Figure 8 shows that the turbulent axial second statistic is underestimated by 
SST κ−ω model in all section analyzed, which explains the smoother mean velocity gradient observed in Fig. 5.  

 
Figure 9. Contour of viscosity ratio υt/υ, for the SST model. 
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Figure 10 illustrates the turbulent kinetic energy distribution near the leading edge, for the SST κ−ω  model, where it can 

be clearly seen that the generation of turbulence occurs very close to the edge and it has a direct connection with the strong 
pressure drop reduction. The result shown in Fig. 10 also complements the information obtained by the uu ′′  profiles 
presented in Fig. 8, showing that the main contribution to the kinetic energy is due to the axial second order statistics. 

  

Figure 10. Contour of turbulent kinetic energy. SST κ−ω model. 

An interesting parameter which can give information about the coherent structures is the Q-criteria, which can be 
defined as 
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Figure 11 illustrates the contours of the Q-criteria for the SST κ−ω model. Note the high values near the leading 
edge, indicating the formation of coherent vortices, which quickly disappear, since the model is steady state and 2D. 

 

Figure 11. Contour of the Q criteria at the leading edge. SST κ−ω model. 

5. CONCLUSION 

In the present work, the turbulence models RSM (Launder, 1989), SST κ−ω (Menter, 1994) and LES Dynamic 
(Germano et al., 1991; Lilly, 1992) were applied to determine the incompressible flow over a flat plate with a sharp 
leading edge, with an inclination angles α  =  10. The results obtained were compared with experimental data of 
Crompton (2001).  

The RANS models predicted mean velocities profiles which presented reasonable agreement with the experimental 
results; however none of the RANS models captured the second recirculation bubble and a correct entrainment in the 
boundary shear layer, causing deviations in the velocity and pressure field in the bubble region.  

Due the inability to calculate the flow in the recirculation zone, the SST κ−ω model presents poor pressure 
prediction quality close to the leading edge, anticipating the pressure recovery. The RSM model produced a velocity 
field with an anomaly, which influenced the pressure coefficient distribution, reducing its peak and smoothing the 
pressure recovery. 

In general, the SST κ−ω model can be considered superior to the RSM model, since it requires less simulation time, 
and the results were more coherent. The RSM model showed good results for uu ′′ , but it presented difficulty of 
convergence, high computational cost and spurious velocity at the reattachment region. 

The results obtained with the LES Dynamic model were better than those predicted by the RANS models. The 
leading edge bubble was accurately predicted, presenting excellent agreement for the reattachment length. The LES 
Dynamic model was able to predict the second recirculation bubble, and as a consequence the obtained velocity and 
pressure fields were in good agreement with the experimental data.  
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