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Abstract. Differential models of non-integer orders, or fractional models, have been increasingly used in many fields of science 
and engineering, such as rheology (modeling of viscoelastic behavior), electrochemical processes, dielectric polarization, heat 
transfer phenomena, and chaos, among others. In spite of the more involved theoretical and numerical procedures, the use of such 
models is justified by a more accurate modeling, as has been demonstrated by many authors. The application of fractional models in 
the area of active control of dynamical systems deserves particular mention due to the increasing number of publications 
concerning the theme in the last years. The present paper address the generalization of the traditional PID controller by the use of 
fractional operators, which are briefly reviewed. One demonstrates the efficiency of fractional controllers, as compared to 
traditional integer-order controllers, explaining the influence of the fractional order over the closed-loop system response, by 
considering the implementation to an undamped dynamical system. It is concluded that the utilization of the Fractional Calculus as 
associated to system control is well justified as an intereresting alternative to traditional design of controlers, as such technique 
provides extended modeling flexibility and improved accuracy. 
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1. INTRODUCTION 

 
Fractional Calculus is an old mathematical analysis field dating from 300 years ago that has attracted the attention 

from several famous mathematicians such as Euler, Laplace, Fourier, Abel, Liouville, Riemann, Laurent, Lacroix, 
Leibniz, Grunwald e Letnikov and Weyl. It has been employed in the last three decades in modern applications of 
differential and integral equations to the modeling of several types of problems of Science and Engineering, such as: 
signal processing (Barbosa et al., 2006; Bultheel and Martinez-Sulbaran, 2007); electrical systems (Yifei et al., 2005); 
fluid mechanics (Amaral, 2003); viscoelasticity (Bagley and Torvik, 1983; Glockle and Nonnenmacher, 1991; Maia, 
1998; Adolfsson et al., 2005; Bagley, 2007; Jia et al., 2007); mathematical biology (Cole, 1933; Anastasio, 1994); 
electrochemics (Oldham, 1972; Goto and Ishii, 1975); rheology (Cavazos et al., 2007); heat transfer (Agrawal, 2004); 
economy (Meerschaert, 2006); electromagnetism (Engheta, 1996; Machado et al., 2006); diffusion problems (Pedron, 
2003; Gonçalves et al., 2005; Pedron and Mendes, 2005; Andrade, 2006; Gonçalves et al., 2006). 

The fundamental motivation for the practical use of the Fractional Calculus is the possibility of a more accurate 
modeling of physical phenomena, at the expense of a higher analytical and numerical complexity in comparison with 
the traditional Calculus tools. 

The relevance of such theme in Science and Engineering is proved by the expressive and growing number of 
publications that exists in the form of books and scientific articles, besides the existence of international conferences 
dedicated to the topic. 

In this context, the present work has the aim of reviewing the fundamentals of Fractional Calculus and to illustrate 
its application to the field of active control of dynamical systems. This is done by presenting the generalization of 
traditional largely known active controllers and by performing an implementation of a fractional controller to an 
undamped mechanical vibrating system. Also, another major objective of this work is to investigate the influence of the 
controller parameters over the closed-loop system response. Some reference works within this area are the ones of 
Hartley and Lorenzo (2002), Valério and Costa (2006), Podlubny (1994), Dorcak (1994) and Podlubny et al. (1997). 

 
2. FUNDAMENTALS OF FRACTIONAL CALCULUS 

 
The works by Kilbas et al. (2006), Miller and Ross (1993) and Sabatier et al. (2007) bring comprehensive 

presentations of the fundamentals of Fractional Calculus, which are briefly reviewed in this section. 
α  is defined as: The Riemann-Liouville fractional integration of order 
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with  (or , if  is a complex number). 0z > ( )Re 0z > z

Two distinct definitions for fractional derivatives are commonly utilized in solving engineering problems that 
involves fractional differential equations: 

− The Caputo Fractional Derivative: 
 

( ) ( ) ( ) ( )1

0

1 nt
n

C n

d f
D f t t d

n d
αα τ

τ τ
α τ

− −= −
Γ − ∫   (3) 

 
− The Riemann-Liouville Fractional Derivative: 
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in which n is the least integer value greater than or equal to α . For null initial conditions, both definitions become 
equivalent. 

One can demonstrate that the Laplace transform of a Riemann-Liouville fractional derivative is given by (Kilbas et 
al., 2006): 
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When 0 1α< < , Eq. (5) reduces to: 
 

( ){ } ( ){ }D f t s f tα α=L L . (6) 
 
For obtaining the solution of fractional differential equations, two wide classes of numerical methods are commonly 

used. One of them utilizes direct approximation of fractional derivatives in the time domain. Methods that belong to this 
class are called direct methods. The second class, named indirect methods, utilize different approximations of the 
fractional derivative operator. 

An efficient indirect method developed for the simulation of complex fractional systems involves the 
approximation of the fractional integration operator in the frequency domain with a state space representation (Poinot 
and Trigeassou, 2003). Such approximation utilizes an ideal integrator 1 s  acting together with a conventional phase 
filter proposed by Oustaloup (1995): 
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where 1ω′  is the lowest and Nω  is the largest frequencies that define the frequency band in which the problem analysis 
will be performed, and: 
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in which  is the fractional integration order and 0n > 1j = −  is the imaginary unit. 

The approximation for the fractional integrator is then given by: 
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whose block diagram is presented in Fig. 1. 
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Figure 1. Block diagram of the fractional integrator approximation, . ( )nD s−

 
The state space representation of the operator is given by (Poinot and Trigeassou, 2003): 
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3. GENERALIZATION OF THE TRADITIONAL PID CONTROLLER 

 

 
 

Figure 2. Control system with unity feedback. 
 
The active control of dynamical systems is typically performed through the known PID (Proportional-Integral-

Derivative) controllers and their variants, from which PI and PD controllers are two examples. One considers controlled 
processes with unity feedback as shown in Fig. 2. In this figure, ( )G s  designates the transfer function of the process to 

be controlled,  designates the controller’s transfer function, ( )cG s ( )W s  designates an input,  designates an error, 

 designates the controller’s output and  designates the system’s output. 
( )E s

( )U s ( )Y s
In the Laplace domain, the transfer function associated to a PID controller is found to be: 
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in which k k , 1 c= 2 c ik k T=  and  are the controller’s parameters to be chosen in such a way that the closed-
loop system response satisfies some design criteria. In the time domain the controller is represented by the differential 
equation that relates the time signals of the error 

3 c dk k T=

( )e t  to the controller’s output ( )u t : 
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If fractional order elements are available, an immediate generalization resulting in a fractional PID controller can be 

made through the inclusion of fractional integration and differentiation into the traditional integer-order PID controller. 
From Eq. (11), one has that the fractional PID controller transfer function is given by: 
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The following fractional differential equation in the time domain is associated to this controller: 
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It should be pointed-out that, as the control law given by Eq. (14) involves fractional integration of order λ  and 
fractional differentiation of order μ , the fractional PID controller is generally referred to as a PI Dλ μ  controller. 
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One can demonstrate that the closed-loop system transfer function for the control system with unity feedback as 

presented in Fig. 2 is given by: 
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with the following associated characteristic equation: 
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Then, for the traditional PID controller, one has that the associated characteristic equation is: 
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while that for a PI Dλ μ  controller one would have the following characteristic equation: 
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As one has as fundamental objective in control design the correct allocation of the closed-loop system transfer 

function poles, it is verified by direct comparison between Eqs. (17) and (18) that the PI Dλ μ  controller provides 
enhanced freedom and improved design capability that those ones provided by the traditional integer-order PID 
controller. 

 
4. IMPLEMENTATION OF A FRACTIONAL CONTROLLER TO AN UNDAMPED SYSTEM 
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Figure 3. One-degree-of-freedom vibrating system to be controlled. 

 
Consider the undamped mechanical system presented in Fig. 3 and described by the following differential equation 

of motion: 
 

( ) ( ) ( )m x t k x t f t+ = ,  (19) 
 

in which  represents the system mass,  represents the stiffness, m k ( )x t  represents the displacement, ( )f t  represents 
an external force applied to the mass and the superposed two dots denotes a second order time differentiation. One 
desires to active control the vibrating motion of the mass by means of a control force that will act on the system and that 
is given by ( ) ( )cf t g D x tα= , 0 2α< < . A block diagram of the system acted upon by the control force is presented in 
Fig. 4.  
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Figure 4. Block diagram of the control system. 
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When the control force is acting over the system presented in Fig. 3, the following differential relationships hold in 

the time domain: 
 

( ) ( ) ( )m x t k x t e t+ = ;  (20) 
 
( ) ( ) ( )ce t f t f t= − .  (21) 

 
Applying the Laplace transform to the Eq. (20), one has the transfer function of the process to be controlled: 
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The transfer function of the controller to be utilized is: 
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Noticing that from Eq. (21) one haves: 
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and from Eq. (22) one has: 
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one can write the closed-loop system transfer function as follows: 
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whose block diagram is given in Fig. 5. 
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Figure 5. Closed-loop system transfer function block diagram. 
 
One can, then, by means of an indirect method of numerical approximation of the fractional derivative operator, as 

the one described in Section 2, calculate the system response to unit step inputs, that is,  for  and 

 for . The system mass and stiffness take the values 0.5 kg and 500 N/m, respectively. Several values 
of 

( ) 1 Nf t = 0t ≥

( ) 0 Nf t = 0t <
g  and α  were utilized to evaluate the influence of these parameters over the system response. 
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5. SIMULATION RESULTS AND ANALYSIS 

 
The simulation results are presented as plots of the system’s displacement responses ( )x t . Figures 6 to 15 present 

the behavior of the system response for several values of g  with α  being kept constant, while the Figs. 16 to 22 
present the behavior of the system response for several values of α , with g  being kept constant. 

 

  
  

( ) ( )xFigure 6. Dynamical response of t  to an unit step 
excitation input for 0.125

xFigure 7. Dynamical response of t
0.25

 to an unit step 
excitation input for α = . = . α

  

  
  

( ) ( )xFigure 8. Dynamical response of t  to an unit step 
excitation input for 0.5α = . 

xFigure 9. Dynamical response of t
0.75

 to an unit step 
excitation input for = . α

  

  
  

( ) ( )xFigure 10. Dynamical response of t  to an unit step 
excitation input for 0.875

xFigure 11. Dynamical response of t
1.125

 to an unit step 
excitation input for α = . = . α

  

  
  

( ) ( )Figure 12. Dynamical response of x t  to an unit step 
excitation input for 1.25

Figure 13. Dynamical response of x t
1.5

 to an unit step 
excitation input for α = . = . α

  



 

 
 

Figure 14. Dynamical response of ( )x t
1.75

 to an unit step 
excitation input for α = . 

 

 
 

( )Figure 15. Dynamical response of x t
1.875

 to an unit step 
excitation input for = . α

 
From an analysis of the plots presented in Figs. 6 to 15, one can highlight that an increasing value of g  causes: a 

reduction or an increase in the number of oscillations (for the cases in which the system presents an oscillatory 
response) for 0 1α< < 2 and 1 α< < , respectively; a reduction in the maximum overshoot; an increase in the rise time; 
and an increase in the steady state error (when present). The augmentation in the value of g  can be interpreted as an 
augmentation in the system damping, implying in modification of the system characteristics: small values of g  leads to 
an underdamped system behavior, while larger values of g  leads to an overdamped system behavior. 

 

 
 

Figure 16. Dynamical response of ( )x t
10=

 to an unit step 
excitation input for . g

 

 
 

Figure 18. Dynamical response of ( )x t  to an unit step 
excitation input for . 100g =

 

 
 

Figure 20. Dynamical response of ( )x t
0g
 to an unit step 

excitation input for . 100=
 

 
 

( )xFigure 17. Dynamical response of t
50g =

 to an unit step 
excitation input for . 

 

 
 

( )xFigure 19. Dynamical response of t
500g =

 to an unit step 
excitation input for . 

 

 
 

( )xFigure 21. Dynamical response of t
5000g =

 to an unit step 
excitation input for . 

 



 

 
 

Figure 22. Dynamical response of ( )x t  to an unit step excitation input for . 10000g =
 
By making an analysis of the plots presented in the Figs. 16 to 22 when g  is kept constant, one can see that there is 

a reduction in the number of oscillations (when the system presents an oscillatory response) as α  increases up to 1 and 
that there is an increase in the number of oscillations when α  approaches 2. This fact can be explained by the nature of 
the control force: a value of α  near 0 induces a control force similar to that generated by a spring; an α  value near 1 
induces a control force similar to that generated by a viscous damper; and an α  value near 2 induces a control force 
similar to a system inertia force. Besides that, intermediate values of α  between these conditions would imply a 
superposition of the effects induced by those forces corresponding to an integer value of α . As examples, for 0,5α = , 
the control force would have both characteristics of a spring force and of a viscous damping force; for 1,5α = , the 
control force would have both characteristics of a viscous damping force and of an inertia force. Associated to the 
increase in the α  value, are also related an initial reduction and a later increase in the maximum overshoot, an increase 
in the rise time and a reduction in the steady state error (when present). 

 
6. CONCLUSION 

 
A fractional controller was implemented to an one degree of freedom undamped system. The system response to 

unit step inputs was simulated and allowed to evaluate the influence of controller parameters on the closed-loop 
response. The simulation results enables to conclude that utilization of the Fractional Calculus to system control is well 
justified and deserves attention by control designers, since fractional PI Dλ μ  controllers are associated to an enhanced 
design flexibility. 
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