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Abstract. The transfer path analysis is one of the most popular methods for noise and vibration transmission 
investigation in vibro-acoustics. The method can be used to quantify and qualify the contributions of each instrumented 
sound path to the global emitted noise, and to identify inputted forces as well. This paper presents an alternative 
formulation of the method applied to the force identification problem. Basically, the difference is in obtaining the 
airborn transfer functions. The conventional scheme employs airborne and structural-borne transfer functions which 
need to be previously measured in laboratory. In practice, it is mandatory to maintain the same relative positions for 
the accelerometers and microphones so that the transfer functions could be used. The alternative scheme employs 
measured structural transfer functions, however the airborn transfer functions are calculated during system operation 
for an arbitrary microphone position, which represent an advantage in time and measurement flexibility. 
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1. INTRODUCTION 
 

Transfer Path Analysis (TPA) is a well known investigation technique used to quantify the contributions of the 
vibratory energy flow through the propagation paths of the system. The system is represented by air borne and structural 
borne transfer functions that connect the sources to a given receiver, that is, the inputs to the outputs of the system, 
respectively. The whole calculation consists in two steps, 
 

௜ݔ ൌ  ௜௝f௝ܣ
௞݌ ൌ  ௞௝f௝ܤ

(1) 
(2) 

 
where ܣ௜௝ is the mnth element of the frequency response function matrix (FRF) which correlates the exciting forces, f௝, 
with its measured responses, ݔ௜, and ܤ௞௝ is the mnth element of the FRF matrix between the exciting forces and the 
receiver locations, ݌௞. Note that the system might have many different inputs and outputs. The FRF matrix is generally 
obtained by taking the ratio between known exciting forces and measured acceleration responses, during offline testing. 

Janssen and Verheij (1999) published an application of the TPA method for experimental identification of 
structural-born sound transmission in ships. Eq. (1) and (2) were combined to evaluate the importance of each 
respective path for any specific receiver location. 
 

௞ሺ߱ሻ݌ ൌ  ௜ሺ߱ሻ (3)ݔ௜௝ିଵܣ௞௝ܤ
 

Hence, forces are required only as an intermediate parameter for the calculation of the path contributions. As a 
result, the sum of partial contributions, ሼ݌௞ሽ௣௔௥௧௜௔௟, was compared with the measured total response ሼ݌௞ሽ௧௢௧௔௟, indicating 
good agreement. An extension of the method for multiple uncorrelated sources and measured acceleration responses 
was written by Noumura and Yoshida (2006). 

  
௞ሺ߱ሻ݌ ൌ ݄௞௜ሺ߱ሻݔ௜ሺ߱ሻ                         (4) 

 
Equation (4) above establishes a correlation between the system outputs (vibrational responses) and the receiver 

(sound pressure at the microphone position). Thus, the overall emitted noise can be portioned with respect to the 
vibration transducers, which are supposed to represent each transmission path. 

As it can be seen, the coefficients ݄௜ combine the effects of structural and vibro-acoustic transfer functions. If 
vibration transducers are placed as close as possible to the exciting forces Eq. (4) returns a good approximation for the 
partial sound contributions produced by each exciting force. 

The bottom line is that sometimes it is not possible to access the locations of the exciting forces, then the          
vibro-acoustic transfer functions ܤ௞௝ are needed, according to Eq. (2). 
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In the traditional application of the TPA algorithm the vibro-acoustic functions or B-functions need to be previously 
measured, together with the structural transfer functions, or A-functions. This paper presents an alternative formulation 
to identify B-functions during system operation, using A-functions and measured outputs. 
 
2. B-FUNCTION IDENTIFICATION BASED ON SYSTEM OUTPUTS 
 

Let us consider, for example, a multiple-input-multiple-output (MIMO) system, instrumented with vibration 
transducers and a microphone as a receiver, as shown in Fig. 1. 

 

 
 

Figure 1. Schematic representation of the system with n exciting forces, ݉ accelerometers and one microphone. 
 
According to Eq. (1), the A-functions are the ratios between the system outputs, ݔ௜, and system inputs, f௝, in 

frequency domain. Accelerations signals are conveniently used as system outputs. It writes ܣ௜௝ሺ߱ሻ ൌ  .ሷ௜ሺ߱ሻ/f௝ሺ߱ሻݔ
Similarly, the B-functions are the ratios between pressure and system inputs. It writes ܤ௞௝ሺ߱ሻ ൌ  .௞ሺ߱ሻ/f௝ሺ߱ሻ݌

For a case of single excitation, fଵ, and one receiver ݌ଵ, one may express Eq. (2) as a sum of ݉ terms, where ݉ is the 
number of accelerometers, 

 
ଵ݌ ൌ ሼ݌ଵሽଵ ൅ ሼ݌ଵሽଶ ൅ ൅ڮ ሼ݌ଵሽ௠ ൌ ሼܤଵଵfଵሽଵ ൅ ሼܤଵଵfଵሽଶ ൅ ൅ڮ ሼܤଵଵfଵሽ௠                       (5) 

 
Combining Eq. (3) and (5), 
 
ଵ݌ ൌ ሼܤଵଵሽଵܣଵଵିଵݔሷଵ ൅ ሼܤଵଵሽଶܣଶଵିଵݔሷଶ ൅ ൅ڮ ሼܤଵଵሽ௠ܣ௠ଵିଵ  ሷ௠ (6)ݔ

 
Equation (6) can be written for another single excitation, f௝, as follows. 
 
௞݌ ൌ ൛ܤ௞௝ൟଵܣଵ௝

ିଵݔሷଵ ൅ ൛ܤ௞௝ൟଶܣଶ௝
ିଵݔሷଶ ൅ ൅ڮ ሼܤ௞௝ሽ௠ܣ௠௝ିଵݔሷ௠ (7) 

 
For a time linear time invariant system it is possible to establish ሼ݌௞ሽ௠ ן  ௞ሽ௠ is directly݌ሷ௠. It means that ሼݔ

proportional to its respective transmission path, conveniently represented by ݔሷ௠. Hence, the terms ൛ܤ௜௝ൟ௠ܣ௠௝
ିଵ  must be 

invariants for any fixed ݉, and of course for a fixed receiver location as well. It writes, 
 
݄௞௜ ൌ ൛ܤ௞௝ൟ௜ܣ௜௝

ିଵ  (8) 
 
Now, considering the case of full excitation, Eq. (2) returns, 
 
௞݌ ൌ ሾܤ௞ଵfଵሿ ൅ ൅ڮ ሾܤ௞௡f௡ሿ 
௞݌ ൌ ሾሼܤ௞ଵሽଵܣଵଵିଵݔሷଵଵ ൅ ൅ڮ ሼܤ௞ଵሽ௠ܣ௠ଵିଵ ሷ௠ଵሿݔ ൅ ൅ڮ ሾሼܤ௞௡ሽଵܣଵ௡ିଵݔሷଵ௡ ൅ ൅ڮ ሼܤ௞௡ሽ௠ܣ௠௡ିଵ  ሷ௠௡ሿݔ

 

௞݌ ൌ ሾ݄௞ଵݔሷଵଵ ൅ ൅ڮ ݄௞௠ݔሷ௠ଵሿ ൅ ൅ڮ ሾ݄௞ଵݔሷଵ௡ ൅ ൅ڮ ݄௞௠ݔሷ௠௡ሿ  
௞݌ ൌ ݄௞ଵሺݔሷଵଵ ൅ ൅ڮ ሷଵ௡ሻݔ ൅ ൅ڮ ݄௞௠ሺݔሷ௠ଵ ൅ ൅ڮ ሷ௠௡ሻݔ        (9) 

 
The terms ݔሷ௠௡ represent the acceleration measured by each transducer ‘݉’ due to each force ‘݊’. Thus, Eq. (9) can 

just be simplified to, 
 
௞݌ ൌ ݄௞ଵሺݔሷଵሻ ൅ …൅ ݄௞௠ሺݔሷ௠ሻ ൌ ݄௞௜ݔሷ௜ 

 
(10)

The B-functions can be reconstructed by solving the Eq. (11), defined below. 
  
௞௝ܤ ൌ෍݄௞௜

௜

 ௜௝ܣ (11) 
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Equation (11) needs to be measured many times for different excitation configurations in order to better approximate 
the B-functions. The pseudo-inverse algorithm was employed to solve the linear system of equations. Each term in the 
sum leads to a partial value of pressure, transferred by each propagation path due to each exciting force. The locations 
of accelerometers are often defined by trial and error. 

It is shown that a pair of transfer functions A-B, A-h or an unusual B-h can be used to completely characterize the 
dynamic response of system, in terms of its vibrational and acoustic responses. 
 
3. FORCE IDENTIFICATION 
 

In practical applications, it is usual to have no physical or mathematical information available about the internal 
mechanisms of the system. For those situations the system behavior can be described by a certain relation between its 
inputs and outputs. 

Two indirect methods are used to determine forces for TPA algorithms – the complex stiffness method and matrix 
inversion method (Padilha, 2006). 

The complex stiffness method consists in determining the displacement response in each direction during systems 
operation, on both sides of the structural element. In this case, the structural element is treated as an ideal spring. 

The element stiffness needs to be previously obtained by testing procedure. Therefore, for a given path ‘j’, and for 
each direction, the following equation can be written, 

 
f௝ሺ߱ሻ ൌ ௝,ଶሺ߱ሻݔ௝ሺ߱ሻሾܭ െ  ௝,ଵሺ߱ሻሿ (12)ݔ

 
where f௝ሺωሻ is the operational force transmitted by path ‘j’, K௝ is the complex stiffness, ݔ௝,ଶ and ݔ௝,ଵ are the measured 
displacements on both sides of the structural element. When data are obtained experimentally, displacements are so 
obtained by numerical integration of accelerometers signals. 

The matrix inversion method consist in solving a system of equations, like those presented by Eq. (1) and (2), 
written as, 
 

ሼfሽ ൌ ሾܣሿାሼݔሽ 
ሼ݌ሽ ൌ ሾܤሿሼfሽ 

(13) 
(14) 

 
Each line of the system defined by Eq. (14) is obtained for one receiver, or microphone. The symbol ‘+’ means the 

pseudo-inverse algorithm. For each receiver, a different set of B-functions needs to be determined by measurements or 
by using the procedure shown in item 2. Hence, forces can be also determined by solving, 

 
ሼfሽ ൌ ሾܤሿାሼ݌ሽ 

 
(15)

It is similar to Eq. (14), but it is written in terms of sound pressures. Generally, forces are obtained by solving       
Eq. (13) because it needs a reduced set of measurements. 

Conveniently, most of the force identification problems can be formulated in terms of a linear system of equations. 
When there is no noise in both input and output data the matrix inversion processes are computationally stables. 
However, if there is noise in the data these processes may become ill-conditioned, and the error can be largely amplified 
in the solution, so it becomes completely meaningless (Hansen, 1998). 

In order to avoid matrices inversions, some algorithms have been developed to estimate forces by using numerical 
tools applied to systems modeling (Dobson and Rider, 1990), stochastic processes (Hans, 2007) based on modal 
parameters and distributed probabilities functions (Granger and Perotin, 1998), and mathematical algorithms based on 
the modal behavior of the structure (Silva, 2000).  
 
4. EXPERIMETAL SETUP 
 

A free aluminum plate of dimensions 520x520x2 [mm] was simultaneous excited by two electrodynamic shakers. 
White noise of the same order of magnitude, however, separated by two different noise generators were supplied to the 
shakers. On the other side of the plate, two accelerometers were placed at two arbitrary positions, as shown in Fig. 2. 

The experiment was carried out in a hemi-anechoic chamber for better control of the reference pressure values, that 
is, the references values for B-functions and partial sound contributions. 
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           (a)                                                              (b) 

 
Figure 2. The free aluminum plate. (a) electrodynamic shakers and (b) accelerometers. 

 
The microphone was placed 1.5 m distant from the plate, approximately at its center.  The main calculation steps are 

itemized below. 
 

1. A set of forty five (45) measurements was used to determine the h-functions by solving Eq. (10). A system 
of equation of size [45x2] was solved using a pseudo-inverse algorithm; 

2. The B-functions are reconstructed by solving Eq. (8) and (11). In order to reduce the effect of random 
errors, the calculation was performed for a set of fifteen (15) measurements, and an averaging process was 
realized; 

3. One block of measurements is needed to provide the references values for operational forces, B-functions 
and for the total sound pressure. Thus, the measured outputs are used firstly to obtain the operational forces 
by solving Eq. (1), and secondly to obtain the partial sound contributions by solving Eq. (2); 

 
5. NUMERICAL RESULTS 
 

The TPA algorithm allows determining firstly the amplitude of the exciting forces and secondly the partial sound 
contributions due to each exciting force. The partial sound contributions, together with the forces amplitudes, are 
essential for a complete understanding about the mechanisms of noise generation. 

In order to test the algorithm sensibility to uncertainties, the Eq. (1) and (10) were contaminated with noise, as 
follows 
 

෤௜ݔ ൌ  ሚ௜௝f௝ (16)ܣ
෤௞݌ ൌ ݄௞௜ݔ෤௜ (17) 

 
The symbol ‘~’ denotes uncertainty in the data. Another reason for adding noise in the data is the fact that the 

experiment is seldom controlled in practice. A portion of the measured vibratory energy might come from the ground or 
from another external source outside the experiment, leading to incorrect estimations for operational forces and           
B-functions. 

It was considered two different cases denoted by case A, without additional noise, and Case B, with an additional 
noise of 30% in the pressure values, 5% in the accelerations values and 15% in the A-functions. 

Case A in Fig. 4, both the B1-functions and the B2-functions related to force #1 and force #2 respectively matched 
the reference quite well. Operational forces were also identified, but with few discrepancies around the low frequency 
bands. 

In fact, the force identification process involves matrices inversions which use to amplify the effects of experimental 
errors. The sum of partial sound contributions matched the reference values in the whole frequency range. 

For Case B, the B-functions presented a few discrepancies around the low frequency bands. The same errors appear 
in the operational forces, but in large scale. It was expected that the effect of additional errors would increase the 
discrepancies pointed by Case A. 

Again, the sum of the partial sound contributions matched, except for low frequencies, with the reference values. It 
is clear that the process of obtaining partial sound contributions do not involves matrices inversions, therefore it is less 
sensitive to propagation errors.  

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 
 

Figure 4 – Case A – For all plots the dash and the dotted lines represent the identified values and its references, 
respectively. (a) The B1-function for force #1; (b) the B2-function for force #2; (c) the identified operational force #1; 

(d) the identified operational force #2; (e) the sum of partial sound contributions at the microphone. The one-third 
octave band filter was used on the data. No additional noise was introduced in the data. 

  
 

 
 

Figure 5 – Case B – For all plots the dash and the dotted lines represent the identified values and its references, 
respectively. (a) The B1-function for force #1; (b) the B2-function for force #2; (c) the identified force #1; (d) the 

identified operational force #2; (e) the sum of partial sound contributions at the microphone. The one-third octave band 
filter was used on the data. Additional noise was introduced in the data. 
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6. CONCLUSIONS 
 

The presented alternative formulation of TPA has the attraction of measuring only A-functions before the 
operational test. The B-functions can be automatically determined for any receiver position, which leads to greater 
flexibility and faster testing. 

The results obtained for B-functions and partial sound contributions, with additional noise in output data, fit well 
with its references. From the results it is clear that the B-functions determination process is not sensible to uncertainties, 
which was somehow expected because no inversion matrix process is needed, but least square algorithm. 

It is worth saying that the matrix inversion method for force identification is generally ill-conditioned, and 
numerical instabilities may occur. For these cases, the use of regularization techniques and/or more precisely 
identification algorithms may be necessary. 
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