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Abstract. In this work we present a new three-dimensional analytical approach for the solution of the advection-

diffusion equation to simulate the pollutant dispersion in the atmospheric boundary layer. This goal is reached 

applying the Generalized Integral Laplace Transform Technique considering variable eddy diffusivities and wind 

profiles in the considered equation. No approximation is made along the solution derivation so that is an exact solution 

except for the round-off error. The first simulations and comparisons with experimental data are presented. This new 

methodology is a promissing result because it may be used for quantitative and qualitative estimations of pollutant 

distribution. 
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1. INTRODUCTION  
 

The advection-diffusion equation has been largely applied in the field of air pollution as well, heat and mass transfer 

problems. Exists a vast literature regarding the issue of numerical solution, but the analytical approaches are scarce and 

only for specialized problems of pollutant dispersion simulation in atmosphere, where strong assumptions regarding the 

eddy diffusivity coefficient and wind profile, except for some stationary problems. Among them we mention the works 

of Rounds (1955), Smith (1957), Scriven and Fischer (1975), Demuth (1978), van Ulden (1978), Nieuwstadt and de 

Haan (1981), Tagliazucca et al. (1985), Tirabassi (1989), Tirabassi and Rizza (1994), Sharan et al., (1996), Lin and 

Hildemann (1997), Tirabassi (2003). 

In the last decade appeared in the literature an analytical solution for more realistic air pollution problems, valid for 

any wind profile and eddy diffusivity variable with the height, solving the 2D advection-diffusion equation by the 

Generalized Integral Laplace Transform Technique (GILTT) (Moreira et al., 2009). Recently was developed a semi-

analytical solution for the 3D advection-diffusion equation combining the GILTT with the Advection-Diffusion 

Multilayer method (Costa et al., 2006). This solution is based on a discretization of the Atmospheric Boundary Layer 

(ABL) in N sub-layers where in each sub-layer the advection-diffusion equation is solved by the Laplace transform 

technique, considering an average value for the eddy diffusivity and wind speed profiles.    

In this work, pursuing the task of searching analytical solutions, we solve analytically, the 3D advection-diffusion 

equation in Cartesian geometry using the GILTT method, in order to avoid the Atmospheric Boundary Layer 

discretization. For such, the pollutant concentration is expanded in a double series of eigenfunctions attained from an 

auxiliary Sturm-Liouville problem. Replacing this expansion in the original equation and taking moments we come out 

with linear second order matrix differential equations. Applying the order reduction and diagonalization techniques we 

solve the resulting first order linear matrix differential equation by the Laplace Transform method. Once the 

transformed problem is solved, the solution of the advection-diffusion equation is well determined by the mentioned 

double series expansion. Showing the existence of the solution, the Cauchy-Kowalesky theorem (Courant and Hilbert, 

1989) guarantees the uniqueness. To our knowledge, analytical solution for this kind of problem doesn’t exist in the 

literature. 

Numerical results and comparison with the Copenhagen experimental data are also presented. 

To reach this goal, we outline the paper as follows: in section 2, we report in detail the derivation of the GILTT 

solution for the three-dimensional advection-diffusion equation in Cartesian geometry. In section 3 the first numerical 

results and the comparison with the experimental data are presented, and finally in section 4, is discussed the principal 

aspects of this method and conclusions. 
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2. THE ANALYTICAL SOLUTION 
 

The advection-diffusion equation of air pollution in the atmosphere is essentially a statement of conservation of the 

suspended material. The concentration turbulent fluxes are assumed to be proportional to the mean concentration 

gradient which is known as Fick-theory. This assumption, combined with the continuity equation, leads to the steady 

state advection-diffusion equation (Blackadar, 1997): 
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where c denotes the average concentration, xK , yK , zK  and u, v, w are the Cartesian components of eddy diffusivity 

and wind profile, respectively and 0 < � < ℎ, 0 < � < ��, 0 < � < ��, where h is the height of the ABL and xL , yL  

are far away from the source. Here we consider that the eddy diffusivities and wind profile have a continuous 

dependence on the z variable. The x-axis of the Cartesian coordinate system is aligned in the direction of the actual 

wind, the y-axis is oriented in the horizontal crosswind direction, and the z-axis is chosen vertically upwards. 

In order to solve the Eq. (1) we included the following boundary conditions: 
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���0, �, �� = ���� − ������ − � �          (1b) 

 

where δ  is the Dirac delta function and Hs is the height source. A continuous point source of constant emission rate Q  

is assumed. 

Now we are in position to solve problem (1), for the first time, by the GILTT approach. For this end, following the 

same procedure adopted for the two-dimensional problems presented in Moreira et al. (2009), we expand the 

concentration in the ensuing series:  

 

���, �, �� = ∑ ∑ �",#���$#���%"���&#'�("'�                                                                                                              (2) 

 

At this point, it is relevant to recall that the eigenfunctions $#��� = cos ,#�  and %"��� = cos ,"�  are solutions of 

the well known Sturm-Liouville problem appearing in the y and z variables with respective eigenvalues ,# = #.
/0

 and 

," = ".
1  (n, m = 0,1,2,…). 

To determine the unknown coefficient �",#��� we replace Eq. (2) in Eq. (1). This procedure leads to:  
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Here, prime and double prime means first and second derivative respectively. 

Taking moments, we mean multiplying equation (3) by %7���$8���, integrating in the domain hz <<0  and

yLy <<0 , using the orthogonality property of the eigenfunctions, we promptly obtain: 
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which can be recast in matrix form like: 
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?@$<<��� + ?=$′��� + ?A$��� = 0                                                                                                                             (5) 

   

Here Y(x) is the vector whose components are { )(, xc nm } and ?@, ?=, ?A are the matrices whose entries are respectively:  
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Equation (5) can be rewritten as:  

 

$<<��� + H$′��� + I$��� = 0                                                                                                                                     (6) 

 

where the matrix F is defined as H = ?@J@?= and matrix G as I = ?@J@?A. The integrals appearing in B1, B2 and B3 are 

solved numerically via Gauss Legendre Quadrature. 

Similar procedure leads to the boundary conditions:
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where A
-1

 is the inverse of matrix A having the entry:  
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Applying the standard procedure of order reduction to Eq. (6) we come out with the result:  
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Here Z(x) is the vector ))(),(()( 21 xZxZcolxZ = and the matrix H has the block form 
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respectively boundary conditions for the vector components:  
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The transformed problem (7) is solved applying the Laplace Transform technique and diagonalization (Buske et al., 

2007; Moreira et al., 2009). Applying the Laplace transform to Eq. (7), we obtain:  

 

)0()()( ZsZHsZs =+ ,                                                                                                                                                 (8) 

 

where )(sZ  denotes the Laplace Transform of the vector )(xZ . Observing that the matrix H has distinct eigenvalues, 

we can write: 

 
1−= XDXH .                                                                                                                                                             (9) 

 

Here D is the diagonal matrix of eigenvalues of the matrix H, X is the matrix of the respective eigenfunctions and X
-1

 it 

is the inverse. Indeed, replacing Eq. (9) in Eq. (8) and using standard algebraic operations we obtain: 
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The elements of the matrix (sI + D) have the form {s + di} where 
id  are the eigenvalues of the matrix H  given in Eq. 

(7). It is known that the inverse of a diagonal matrix is the inverse of their elements, in other words, the elements of (sI 
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+
 whose transformed inverse of Laplace is xdie

− . )exp(Dx  being the diagonal matrix with elements xdie
−  

the final solution is given by:  

 

ξ)()0()exp()( 1
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where )exp()( DxXxM =  and )0(1
ZX

−=ξ . By the choice of a new arbitrary constant vector ξ, we avoid the inversion of 

X. To this point we must notice that all components of the arbitrary constant vector ξ are unknown.  

As mentioned, to construct the solution of problem (7) we need to apply the condition 0)(2 =xLZ  and also 

1

01 )()()0( −= AyYHQZZ jsi
 because the new constant vector definition (ξ). For such we recast the solution given by Eq. 

(11) like: 

 

















=









2

1

2221

1211

2

1

)()(

)()(

)(

)(

ξ

ξ

xMxM

xMxM

xZ

xZ .                                                                                                                            (12) 

 

To determine the unknown vector ξ, we solve the following linear system resulting from the application of the 

boundary conditions to the solution appearing in Eq. (12), namely 
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Once the constant vector is obtained, the solution for the pollutant concentration is well determined and given by 

the classical result: 
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where $#���  and %"���  are obtained from the solution of the Sturm-Liouville problems ($#��� = cos ,#�  and 

%"��� = cos ,"�  ;  ,# = #.
/0

 and ," = ".
1  �P, Q =  0,1,2, … �. � and �",#��� comes from the solution of the 

transformed problem (Eq. 7).  

At this point it is important to stress that the crosswind integration of the three-dimensional advection-diffusion 

equation leads to the well known solution (Wortmann et al., 2005; Buske et al. 2007; Tirabassi et al., 2009; Moreira et 

al., 2009): 
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 3. PERFORMANCE AGAINST EXPERIMENTAL DATA 
 

The advection-diffusion equation has been widely applied in operational atmospheric dispersion models to predict 

the mean concentrations of contaminants in the ABL. In principle, it is possible to obtain from this equation a 

theoretical model of dispersion from a continuous point source, given appropriate physical boundary and initial 

conditions, plus a knowledge of the mean wind velocity and concentration turbulent fluxes. This last aspect could be 

interpreted as the physical connection with the actual atmosphere. In fact the reliability of each model strongly depends 

on the way as turbulent parameters are calculated and related to the current understanding of the ABL. 

The present work considers the turbulence parameterisation scheme suggested by Degrazia et al. (2002). In terms of 

the convective scaling parameters, the eddy diffusivity can be formulated as: 
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where X
*
 is the adimensional distance, cv,w=0.36, cu=0.3, imf )( *

 is the normalized frequency of the spectral peak. 

According to Kaimal et al. (1976) and Caughey (1982): 
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with hvmum 5.1)()( == λλ  and ( ) ( )[ ]hzhzhwm 8exp0003.04exp18.1)( −−−=λ  where im )(λ  is the peak wavelength of the 

turbulent velocity spectra.  The dissipation function used is the mean value 4.0=ψ  (Caughey, 1982). 

The expression used for evaluating mean wind is the power law profile (Panofsky and Dutton, 1984): 
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where zu  and 1u  are the mean wind velocity at the heights z and z1, while n is an exponent that is related to the 

intensity of turbulence (Irwin, 1979). 

In order to illustrate the aptness of the discussed formulation to simulate contaminant dispersion in the ABL, we 

evaluate the performance of the discussed solutions against experimental ground-level concentration using the 

Copenhagen dispersion experiment. This experiment was carried out in the northern part of Copenhagen and described 

by Gryning and Lyck (1984). It consisted of tracer released without buoyancy from a tower at a height of 115 m, and 

collection of tracer sampling units at the ground-level positions at the maximum of three crosswind arcs. The sampling 

units were positioned at two to six kilometers from the point of release. The site was mainly residential with a 

roughness length of the 0.6 m. 

The simulations presented here assume that � = � = 0 and that the wind is higher than 2m/s. Table 1 shows the 

statistical analysis of the presented model compared with the data from experiments of Copenhagen for crosswind 

integrated and centerline concentrations considering that in the y direction the plume has a Gaussian distribution. The 

statistical indices are defined as (Hanna, 1989): 

 

NMSE (normalized mean square error) = 
oppo CCCC

2)( − , 

FA2 = fraction of data (%, normalized to 1) for 2)/(5.0 ≤≤ op CC , 

COR (correlation coefficient) = 
poppoo CCCC σσ−− )(( , 

FB (fractional bias) = )(5.0 popo CCCC +− , 

FS (fractional standard deviations) = )(5.0)( popo σ+σσ−σ , 

 

where the subscripts o and p refer to observed and predicted quantities, respectively, and the overbar indicates an 

averaged value. The statistical index FB says if the predicted quantities underestimate or overestimate the observed 

ones. The statistical index NMSE represents the model values dispersion in respect to data dispersion. The best results 

are expected to have values near to zero for the indices NMSE, FB and FS, and near to 1 in the indices COR and FA2. 

 

Table 1. Statistical evaluation of model results for the approximated steady-state, three-dimensional solution for Fickian 

flows, Copenhagen experiment (centerline concentrations. 

 

Model NMSE COR FA2 FB FS 

GILTT 2D 0.06 0.92 1.00 -0.14 -0.02 

GILTT 3D 0.33 0.80 0.87 0.28 0.09 

 

Analysing the statistical indices we notice that the model simulate satisfactorily the observed concentrations, 

regarding the NMSE, FB and FS values relatively near to zero and COR relatively near to 1. 

Figure 1 show the observed and predicted scatter diagram of centerline ground-level concentrations. In this respect, 

it is important to note that the model reproduced fairly well the observed concentration for the Copenhagen experiment.  

 

4. CONCLUSIONS 
 

We presented an analytical approach to solve the three-dimensional advection-diffusion equation using integral 

transform technique. Moreover the Cauchy-Kowaleski theorem guarantees the existence and uniqueness of the solution, 

because no approximation is made along the solution derivation except for the series truncation of the solution.  

Analytical solutions of equations are of fundamental importance in understanding and describing physical 

phenomena, since they are able to take into account all the parameters of a problem, and investigate their influence. 

Moreover, when using models, while they are rather sophisticated instruments that ultimately reflect the current state of 

knowledge on turbulent transport in the atmosphere, the results they provide are subject to a considerable margin of 

error. This is due to various factors, including in particular the uncertainty of the intrinsic variability of the atmosphere. 

Models, in fact, provide values expressed as an average, i.e., a mean value obtained by the repeated performance of 

many experiments, while the measured concentrations are a single value of the sample to which the ensemble average 

provided by models refer. This is a general characteristic of the theory of atmospheric turbulence and is a consequence 
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of the statistical approach used in attempting to parameterize the chaotic character of the measured data. An analytical 

solution can be useful in evaluating the performances of numerical model (that solve numerically the advection 

diffusion equation) that could compare their results, not only against experimental data but, in an easier way, with the 

solution itself in order to check numerical errors without the uncertainties presented above. 

 
Figure 1. Scatter diagram for the solution (13) together with Eq. (38): Observed (Co) and predicted (Cp) centerline 

ground-level concentration normalised with emission rate (c/Q). Data between lines correspond to ratio Co/Cp [ ]2,5.0∈ . 

 

We will step forward checking the new model to other stability conditions, apply to different parameterizations and 

compare the results with other experimental data sets. 
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