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Abstract. Classification methods such as linear discriminant analysDA) have been widely applied to fault detection
in industrial processes. In this case, the problem consistdassifying the operation as normal or faulty on the basis
monitored variables. If the number of such variables is ¢aigelection techniques may be used to choose an informative
subset of features in order to obtain a classifier with begmeralization properties. In fact, the use of too manyfess
may cause overfitting problems. In LDA, the presence of caliitiearity among the features may also lead to poor-
conditioning issues, which are a known cause of gener&izatroblems for the resulting classifier. This paper présen

a fault detection approach that employs the Successivee&tions Algorithm (SPA) as a feature selection technique fo
use with LDA. SPA is a recently proposed technique, whichspesifically designed to minimize multicollinearity among
the classifier inputs. The joint use of SPA and LDA has pravigt®od results in several pattern recognition problems.
However, their application in process fault detection hasmeen previously reported. The performance of the praphose
approach was assessed in a simulated case study involentetinessee Eastman process, which is a reactor-separator-
recycle system widely used as a benchmark in fault detestiaties. The simulations involved 22 measured variables
under normal operating conditions, as well as eight diffetypes of faults. The LDA classifier inputs comprised prese
and time-lagged values of the measurements. SPA was thlischfapselect not only the measurements to be considered
for fault detection, but also the time lags to be employede Esults were evaluated in terms of overall classification
performance, as well as sensitivity and false alarm rate.esehmetrics were obtained for a test set, which was not
employed for feature selection or classifier training. A®ault, a classification accuracy of 100% was obtained for six
of the eight fault types. The accuracy for the remainingtiatdnged from 75% to 85%. For comparison, two other
classification techniques were also employed, namdliearest Neighbours (KNN) and LDA with feature selectiom by
Genetic Algorithm (GA-LDA). As a result, SPA-LDA was foumtbé superior to KNN and comparable to GA-LDA. In
addition, SPA-LDA provided more parsimonious classifaratnodels as compared to GA-LDA.
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1. INTRODUCTION

In dynamic systems, a fault can be understood as a deviatiom Miormal behaviour, which may arise for several
reasons, such as design error, undue use or natural degreflaermann, 2006 and Venkatasubramanian et al., 2003).
Since the occurrence of faults cannot be completely avoieffidient methods for fault detection are very important to
prevent economics loss or risk to human operators. In a@nalyedundancy schemes, a model is employed to perform
dynamic consistency checks between the inputs and outfilits system. However, such an approach may not be feasible
if the a priori knowledge about the system is insufficient to build a su@tabbdel. In contrast, data-driven methods
(or process history based methods) only require the avjabf historical process data. In this case, classifiwati
techniques such as-nearest neighbours (KNN) (Friedman, Baskett and Shud®@k5 and He and Wang, 2007), and
Linear Discriminant Analysis (LDA) (Chiang et al., 2001 dae used. For this purpose, fault detection can be fornulilate
as a classification problem involving two classes: Glassrmal operation and Classoperation with fault.

In classification problems, the results can be greatly téteby the choice of features employed as inputs to the clas-
sifier. A variety of different techniques have been applethe problem of automated feature selection, includingaleu
networks (Gascaa and Sanchezb, 2006), evolutionary #igwi(Chiang and Pell, 2004) and the Successive Projections
Algorithm (SPA) (Pontes et al., 2005). SPA is a recently psga method, which was specifically designed for use with
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LDA classifiers. Application examples include the clasatiicn of vegetable oils from voltammetric data (GambarrtoNe

et. al., 2009), diesel samples from near-infrared measemésr(Pontes et al., 2005) and soil types using laser-imtuce
breakdown spectroscopy (Pontes et al., 2009). The preapat proposes the use of SPA-LDA for fault detection. In this
case, the LDA classifier inputs may comprise present andtgged values of measured process variables. Therefore,
SPA will be applied to select not only the measurements toopsidered for fault detection, but also the time lags to be
employed.

The proposed SPA-LDA fault detection technique is illugdaby using simulated data from the Tennessee Eastman
process (TEP), which is a reactor-separator-recyclesystelely used as a benchmark in fault detection studies (3own
and Vogel, 1993). For comparison, two other classificateathiques are also employed, namely: (1) KNN applied to
the full set of available features and (2) LDA with featuresgon by a Genetic Algorithm (GA-LDA) (Chiang and Pell,
2004). The results are evaluated in terms of overall classifin performance, as well as sensitivity and false alaten r

2. Linear Discriminant Analysis

The purpose of Discriminant Analysis is to classify objente one of several groups based on a set of features that
describe the objects. Leat = [z1,z2,...,24]7 be an object that must be assigned to one outmdssible classes. The
Linear Discriminant Analysis method employs the Mahalasalistance (Maesschalck, Rimbaud and Massart, 2000),
which can be defined as follows. The squared Mahalanobiardiet?(x, 1.;) betweenx and the center of thg'" class
(j =1,2,...,c) is defined as

2, p5) = (¢ = ) TB7(x — py); 1)

wherep; and ¥, correspond to the mean and covariance matrix ofjtfieclass, respectively. If the true mean and
covariance values for the population are unknown (whictsigally the case), maximum likelihood estimaigsandS;
may be employed in place of; and3;, respectively. These estimates can be obtained from a diefitef training objects
of known classification. It is worth noting that LDA estimata single pooled covariance mat@x instead of using a
separate estimate for each class. This regularizatioredure simplifies the classification model and results inaline
decision surfaces (hyperplanes)R (Duda, 2001). With this modification, the squared Mahalasdistance between
x and the center of thg!® class is calculated according to Eq. (2). Objeds then assigned to the claggor which
r?(x,%;) has the smallest value.

(x,%;) = (x —%;)"S7 (x — %); 2)
2.1 Classification features for fault detection

Suppose thaf process variables, , ws, . . ., w, are monitored for fault detection purposes. Lgtt) be the measured
value ofw; at timet. A possible approach consists of using(t), w2 (), . . ., wy(t) as features to classify the operation as
“normal” or “faulty” attimet. In this case, the object to be classified would be a vedtor= [w (t), w2 (t), ..., w,(t)].
Given an operation log of the system at timegs, . . ., t,,, the training data for the classifier could be disposed irrimnat

form as
XT(tl) w1 (t1> ’w2(t1) . ’wq(t1>

XT (l‘,g) w1 (tg) wa (l‘,g) e Wq (tg)
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Now, consider that the measurements are acquired with dasdrsampling period”. In this case, an alternative
consists of using not only the present values, but also teevadues ofw;, ws, . .., w, as classifier inputs. In this case,
the object at time would be

x(t)=[wi(t) wi(t—=T) wit—(p—-—1DT) ... wo(t) we(t—T) we(t—(p—1T)...
wy(t) we(t—=T) wy(t—(p— 1)T)]T

where constant defines the time window to be used. The classification featatrémet would then be

T1 (t) = W1 (t)

zp(t) =wi(t — (p—1)T)
Tp41(t) = wa ()

w2p(t) = w2 (t = (p = 1)T)

Tap(t) = we(t — (p— 1)T)
3. The Successive Projections Algorithm for Classificatiofroblems

An intrinsic limitation of LDA is the assumption that the shification features are not linearly dependent over the
training data. Otherwise, the calculation of the matrixeirse in Eq. (2) becomesiill-conditioned (Krzanowski eti95).
Therefore, the use of LDA usually requires an appropriadéuiee selection procedure (Pontes et al., 2005; Krzanaostski
al., 1995).

In a classification framework, the modelling informatiomsists of a matrix of objectsX)) and a class index for
each object. MatriXX has dimensionsN x K), that is, N objects withK features each. The Successive Projections
Algorithm for feature selection in classification problewss proposed in (Pontes et al., 2005) and comprises two main
phases using two data sets: training and validation. Phasedists of projection operations carried out on the trani
matrix X, which generatd< chains ofM features each. The construction of each chain starts frabthe features
zr, k= 1,..., K. Each subsequent feature included in the chain is selectedier to display the least collinearity with
the previous ones. The maximum lendthof the chain is given by

M =min(N — ¢, K) 3)

wherec is the number of classes considered in the problem (Duda dfdrStork, 2001). However, a smaller value\éf
can be imposed by the user in order to save computational time

In Phase 2, candidate subsets of features are extractedieoamains and evaluated according to the averagextisk
of misclassification by LDA when the subset of features uraatuation is employed. Such a cost is calculated in the
validation set according to Equation (4).

N,
1 v
Gk7rL:Fv7;g7L,k'rrb; k:17aK7m:17aM (4)

where N, is the number of validation objects aé,,, is calculated by using the first features of the:'" chain.
Moreover,g,, i, is defined as

T%m (Xn ) )_(ITL)

i 2 %)
mln[j?éjnTkTrL(xn’ XIj)

In,km = n=1,..., N, (5)
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wherer?, (x,,Xry) is the squared Mahalanobis distance (Eq. 2) between abje@df class index'n) and the sample
meanx,, of its true class. The denominator in Eq. (5) correspondBaastjuared Mahalanobis distance between object
x,, and the center of the closest wrong class. Ideally,,, should be as small as possible, that is, objgcshould be
close to the center of its true class and distant from theecemif all other classes (in the statistical sense definetidy t
Mahalanobis distance).

4. Case Study

The proposed method will be applied to the same data set bé(Bk, 2008), which was obtained from the Tennessee
Eastman Process simulator (Downs and Vogel, 1993). The iplelndes five major units: a reactor, a product condenser,
a vapor-liquid separator, a recycle compressor and a ptathigper. It converts four source materials (PA, PB, PC) PD
into two products (PG and PH).

Twenty-two process variables, listed in Table 1, are usednfonitoring the operation. The sampling peribdvas
set to three minutes. The faults under consideration coasmsight disturbances available in the simulator, which ar
listed in Table 2. In this table, the first seven disturbarazesstep changes and the last one is a random perturbation. A
simulation lasting 200 sampling periods was carried outfmrh type of fault. In each simulation, the fault was ingkrte
after 100 samples.

Constantp (width of the time window) was set to 40. Therefore, each abjeas described by 880 features (22
variables times 40 lags). The obje&t®) corresponding to normal operation were obtained fer407 up tot = 1007
It is worth noting thatx(¢) could not be defined far < 407" as some of the time-lagged values would not be available.
The objects objects(t) corresponding to operation with fault were obtained#fes 1017 up tot = 2007". For each
fault type, twenty objects were randomly selected for \alimh. In addition, another twenty objects were separated f
test purposes. These test objects were only used in the Vialaletion and comparative analysis of the classifiers.

Table 1. Process variables available for fault detection.
Process variable Description
w1 PA feed flowrate.
wa PD feed flowrate.
w3 PE feed flowrate.
wy PA and PC feed flowrate.
ws Recycle flowrate.
we Reactor feed rate.
wry Reactor pressure.
ws Reactor level.
wy Reactor temperature.
w10 Purge rate.
w11 Product separator temperaturg.
w12 Product separator level.
w13 Product separator pressure.
w14 Product separator underflow,
w15 Stripper level.
w16 Stripper pressure.
w17 Stripper underflow.
w1g Stripper temperature.
w19 Stripper steam flow.
w20 Compressor work.
wa1 Reactor outlet temperature.
wa2 Condenser outlet temperature.
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Table 2. Simulated Faults.

Fault Disturbance
Type 1 PA/PC feed ratio.
Type 2 PB composition.
Type 3 PD feed temperature.

Type 4 Reactor cooling water inlet temperature
Type 5 | Condenser cooling water inlet temperature.

Type 6 PA feed loss.
Type 7 PC header pressure loss.
Type 8 PA, PB, PC feed composition

4.1 Evaluation Metrics
In fault detection, four results are possible:

1. True Positive (TP): the classifier indicates a fault whéawst is present;
2. False Positive (FP): the classifier indicates a fault wtheroperation is normal;
3. True Negative (TN): the classifier indicates a normal apen when the operation is normal;

4. False Negative (FN): the classifier indicates a normataijmn when a fault is present;

The number of TP, FP, TN and FN can be used for sensitivity é®8)specificity (SP) calculations as

TP
SE(%) = (7TP+FN) x 100% )
TN

In addition, a general Accuracy Rate (AR) can be defined as

Number of errors
~ Number of object; X 100% ®

AR(%) = (1

4.2 Implementation details

SPA-LDA, GA-LDA and KNN classification routines were implemted in Matlab 7.6. In the KNN algorithm the
number of neighbours was optimized according to the number of classificationrerio the validation set. If two
different values of: provided the same result, the average number of errorsatavithx — 1 andx + 1 was considered
to make the final decision. The GA employed standard binargrabsomes with length equal to the number of available
features (a “1” gene indicates a selected feature). ThesBtoEeach individual was taken as the inverse of the vatidati
cost (Equation 4) calculated by using the features coddaeiciromosome. The probability of a given individual being
selected for the mating pool was proportional to its fitnesslétte method). One-point crossover and mutation opesat
were employed with probabilities of 60% and 10%, respebtieopulation size was kept constant, each generatiomgbein
completely replaced by its descendants. However, the heisidual was automatically transferred to the next getiema
(elitism) to avoid the loss of good solutions. The GA was iearput for 100 generations with 200 chromosomes each.

The fault detection scheme adopted in the case study isrdhasl in Figure 1. A classifier was obtained and tested for
each type of fault.
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Normal Operation
CLASSIFIER 1 <

Operation with Fault Type 1

Normal Operation
CLASSIFIER 2 <

Operation with Fault Type 2

Normal Operation
CLASSIFIER # <

Operation with Fault Type n

Figure 1. Fault detection scheme.

5. Results

For illustration, Figure 2 presents signad(¢) resulting from a simulation with a fault of type 5 introducafter 100
sampling periods.

0.26

0.255 N

kscmh

0.25f i

0245 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Time (sampling periods)

Figure 2. Signalv, (PA feed flowrate) with a fault of type 5 inserted after 100 pény periods. The abbreviation kscmh
referring to thousand standard cubic meters per hour.

Table 3 presents the results obtained when no time lags grtoged in the characterization of the objects. As can be
seen, the performance of all three classification techisi@BA-LDA, GA-LDA and KNN) was poor. In fact, the largest
accuracy rate was 75% for fault type 8 employing SPA-LDA.

Table 4 presents the results obtained with the use of time |Ag can be seen, the classification performance was
substantially improved. Such an improvement results frdmetter discrimination of the classes, as illustrated irurég
3a and 3b for fault type 2.

As seen in Table 4, SPA-LDA and GA-LDA provided better overasults as compared to KNN. The performances
of SPA-LDA and GA-LDA were comparable, with slight differegs in fault types 3 and 8. However, the SPA-LDA
classifiers were considerably more parsimonious (i.e. eyanl a much smaller number of features). Por example,
for fault type 6, GA selected 42 features for the LDA classifighereas SPA selected 29 features (as indicated by the
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(b) Discriminant frontier using features selected by SP#kuut time lags.

Figure 3. Comparison of discriminant frontier with and weith time lags for classification between normal operatiah an
operation with fault type 2.

minimum point of the validation cost curve in Figure 4). Tleéested features for this fault type are shown in Figure} 5(a
and 5(b). It is worth noting that the SPA-LDA classifier oningloys six process variables{, ws, ws, w11, w14 and

w15, With various time lags), whereas the GA-LDA classifier rieggithe use of nineteen process variables (v2, ws,

wy, Wy, We, W7 Ws, Wy, W10, W11, W14, W15, Wig, W17, Wi, Wig, we1 andwss, With various time lags). Therefore, the
SPA-LDA solution would be more convenient for engineeringgoses, as less sensors would be required to implement
the fault detector.

6. Conclusions

This paper proposed a framework for use of SPA-LDA in prodastt detection. For illustration, the proposed
approach was employed in a simulated case study involviagiémnessee Eastman Process. In this example, better
results were obtained by using both present and time-lagaie@s of the process variables as classification feat(nes.
the overall, the SPA-LDA results were superior to those gled by KNN and similar to those obtained by using LDA
with features selected by a GA formulation. As compared tel®H, the SPA-LDA classifiers were considerably more
parsimonious, requiring the use of less sensors to impletherfault detectors.
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These results suggest that the proposed methodology isvaging alternative for fault detection. Future works could
extend the present investigation by using SPA with othessifization techniques, such as QDA (Quadratic Discriminan
Analysis).

Table 3. Results for fault detection without the use of timgsl The abbreviation NF and the symboindicate the
number of features in LDA and the number of neighbours in Kikdpectively.

SPA-LDA GA-LDA KNN
Fault | NF | AR (%) | SE (%) | SP (%) | NF | AR (%) | SE (%) | SP (%) | ~ | AR (%) | SE (%) | SP (%)

Typel| 1 60 20 00 | 7 60 20 00 | 3 60 20 100
Type2 | 3 50 0 100 | 2 50 60 40 4 55 100 10
Type3| 1 60 80 40 5 50 100 0 1 55 80 30
Typed | 2 65 80 50 4 70 90 80 6 60 60 60
Type5| 1 60 100 20 4 60 80 40 |13 60 50 70
Type6 | 1 60 100 20 3 60 80 40 5 55 100 20
Type7 | 1 50 100 0 2 60 100 20 8 50 100 0
Type8 | 2 75 85 65 3 60 80 40 6 50 100 0

Table 4. Results for fault detection with the use of time lalfse abbreviation NF and the symbolindicate the number
of features in LDA and the number of neighbours in KNN, respety.

SPA-LDA GA-LDA KNN
Fault | NF | AR (%) | SE (%) | SP (%) | NF | AR (%) | SE (%) | SP (%) | » | AR (%) | SE (%) | SP (%)
Typel| 1 100 100 100 | 51 | 100 100 100 | 1 100 100 100
Type2 | 2 100 100 100 | 64 | 100 100 100 | 3 100 100 100
Type3| 2 75 81 66 43 95 100 90 3 55 80 30
Typed | 1 100 100 100 | 44 | 100 100 100 | 29 55 10 100
Type5| 1 100 100 100 | 42 | 100 100 100 | 13 57 50 14
Type 6 | 29 | 100 100 100 | 42 | 100 100 100 | 31| 100 100 100
Type7 | 77 | 100 100 100 | 48 | 100 100 100 | 25| 100 100 100
Type8 | 2 85 62 100 | 64 70 80 90 1 100 100 100
55X 107

Validation cost

L
0 10 20 30 40 50 60 70 80
Number of

features in the LDA model

2 1 1 1

Figure 4. Validation cost as a function of the number of festiselected by SPA for the detection of fault type 6. The
arrow indicates the minimum point of the cost curve (29 fezdj
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Figure 5. Result comparasion of SPA and GA algorithm for LDAdwl for fault type 6. The black squares point out the
selected features.

7. ACKNOWLEDGEMENTS

The authors acknowledge the support of FAPESP (Grant 288656 and doctorate scholarship 2087803-7),
PROCAD/CAPES (Grant 0081/05-1), CNPq (research fellop)stind CAPES (Pré-Engenharias).

8. REFERENCES

Casimir, R. , Boutleux, E. and Clerc, G., 2003, Fault diag;mosan induction motor by pattern recognition methods,
Proceedings of the 4th IEEE International Symposim on Diatjos for Eletric Machines, 294-299.

Chiang, L. H., Russell, E. L. and Braatz, R. D., 2001, Fauted#gon and diagnosis in industrial systems. New York:
Springer-Verlag.

Chiang, L. H. and Pell, R. J., 2004, Genetic algorithms comthiwith discriminant analysis for key variable identifica-
tion. Journal of Process ContrplL4(1):143-155.

DudaR. O., Hart P. E. and Stork D. G., 2001, Pattern ClassditaJohn Wiley, New York, 2 edition.

Downs J. J. and Vogel, E. F., 1993, A plant-wide industriaegss control problem, Computers and Chemical Engineer-
ing. Computers & Chemical Engineering, 17(3):245-255.

Friedman, J. H. , Baskett, F. and Shustek, L. J. . An Algoritoninding Nearest Neighbors, 197lEE Transactions
on Computers.24(10) 1000-1006.

Gambarra Neto, F.F., Marino, G., Aradjo, M.C.U., GalvaoKRi., Pontes, M.J.C., Medeiros, E.P. and Lima, R.S.,
2009, Classification of edible vegetable oils using squareawoltammetry with multivariate data analysis. Talanta,
77(5):1660-1666.

Gascaa, E. and Sanchezb, J. S., 2006, Eliminating redupdaddrrelevance using a new MLP-based feature selection
method.Pattern Recognition39(2) 313-315.

He, Q.P. and Wang, J., 2007, Fault Detection Using the k-&&tadeighbor Rule for Semiconductor Manufacturing
ProcessetEEE Transactions on Semiconductor Manufactuyin@(4):345-354.

Isermann, R., 2006, Fault-Diagnosis Systems: An Intradadtom Fault Detection to Fault Tolerancgpringer New
York, NY, USA.

Krzanowski, W.J., Jonathan, P., McCarthy, W.V., ThomasfRM1995, Discriminant analysis with singular covariance
matrices: methods and applications to spectroscopic Apfaied Statistics, 44:101-115.

Maesschalck, R., Rimbaud, D. J. and Massart, D.L., 2000n@he Intell. Lab. Syst. 50{118.

Pei, X., Yamashita, Y., Yoshida, M. and Matsumoto, S. , 2G@Rilt detection in chemical processes using discriminant
analysis.Journal of Chemical Engineering of Japati(1):25-31.

Pontes, M. J. C. , Galvédo, R. K. H., Aradjo, M. C. U., NoguePaN. T. , Neto, O. D. P., José, G. E. and Saldanha,
T. C. B. ., 2005, The Successive Projections Algorithm foe@al Variable Selection in Classification Problems.
Chemometrics and Intelligent Laboratory Systei@&1):11-18.

Pontes, M. J. C., Cortez, J., Galvao, R. K. H., Pasquini, @, M. C. U., Coelho, R. M., Chiba, M. K., Abreu, M.



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

F., Madari, B.E., 2009, Classification of Brazilian soilsumsing LIBS and variable selection in the wavelet domain.
Analytica Chimica Acta642(12):12-18.

Venkatasubramanian, V. , Rengaswamy, R. , Yin, K. and Ka8irN. , 2003, A review of process fault detection and
diagnosis Part I: Quantitative model-based meth@tsnputer and Chemical Engineerirgj7(1):293-311.

Wang, S. and Xiao, F. ., 2004, Sensor fault diagnosis usiimgipal component analysis methdénergy and Buildings
36(2) 147-160.

Wu, W. , Mallet, Y. , Walczak, B. , Penninckx, W. , Massart, D.&nd Heuerding, S. F., 1996, Comparison of regularized
discriminant analysis, linear discriminant analysis anddyatic discriminant analysis, applied to NIR da@aemom.
Intel. Lab. Syst.329(3) 257-265.

9. Responsibility notice

The authors are the only responsible for the printed matiedhuded in this paper.



