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Abstract. Classification methods such as linear discriminant analysis (LDA) have been widely applied to fault detection

in industrial processes. In this case, the problem consistsof classifying the operation as normal or faulty on the basisof

monitored variables. If the number of such variables is large, selection techniques may be used to choose an informative

subset of features in order to obtain a classifier with bettergeneralization properties. In fact, the use of too many features

may cause overfitting problems. In LDA, the presence of multicollinearity among the features may also lead to poor-

conditioning issues, which are a known cause of generalization problems for the resulting classifier. This paper presents

a fault detection approach that employs the Successive Projections Algorithm (SPA) as a feature selection technique for

use with LDA. SPA is a recently proposed technique, which wasspecifically designed to minimize multicollinearity among

the classifier inputs. The joint use of SPA and LDA has provided good results in several pattern recognition problems.

However, their application in process fault detection has not been previously reported. The performance of the proposed

approach was assessed in a simulated case study involving the Tennessee Eastman process, which is a reactor-separator-

recycle system widely used as a benchmark in fault detectionstudies. The simulations involved 22 measured variables

under normal operating conditions, as well as eight different types of faults. The LDA classifier inputs comprised present

and time-lagged values of the measurements. SPA was thus applied to select not only the measurements to be considered

for fault detection, but also the time lags to be employed. The results were evaluated in terms of overall classification

performance, as well as sensitivity and false alarm rate. These metrics were obtained for a test set, which was not

employed for feature selection or classifier training. As a result, a classification accuracy of 100% was obtained for six

of the eight fault types. The accuracy for the remaining faults ranged from 75% to 85%. For comparison, two other

classification techniques were also employed, namelyκ-Nearest Neighbours (KNN) and LDA with feature selection bya

Genetic Algorithm (GA-LDA). As a result, SPA-LDA was found to be superior to KNN and comparable to GA-LDA. In

addition, SPA-LDA provided more parsimonious classification models as compared to GA-LDA.
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1. INTRODUCTION

In dynamic systems, a fault can be understood as a deviation from normal behaviour, which may arise for several

reasons, such as design error, undue use or natural degradation (Isermann, 2006 and Venkatasubramanian et al., 2003).

Since the occurrence of faults cannot be completely avoided, efficient methods for fault detection are very important to

prevent economics loss or risk to human operators. In analytical redundancy schemes, a model is employed to perform

dynamic consistency checks between the inputs and outputs of the system. However, such an approach may not be feasible

if the a priori knowledge about the system is insufficient to build a suitable model. In contrast, data-driven methods

(or process history based methods) only require the availability of historical process data. In this case, classification

techniques such asκ-nearest neighbours (KNN) (Friedman, Baskett and Shustek,1975 and He and Wang, 2007), and

Linear Discriminant Analysis (LDA) (Chiang et al., 2001) can be used. For this purpose, fault detection can be formulated

as a classification problem involving two classes: Class1: normal operation and Class2: operation with fault.

In classification problems, the results can be greatly affected by the choice of features employed as inputs to the clas-

sifier. A variety of different techniques have been applied to the problem of automated feature selection, including neural

networks (Gascaa and Sánchezb, 2006), evolutionary algorithms (Chiang and Pell, 2004) and the Successive Projections

Algorithm (SPA) (Pontes et al., 2005). SPA is a recently proposed method, which was specifically designed for use with
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LDA classifiers. Application examples include the classification of vegetable oils from voltammetric data (Gambarra Neto

et. al., 2009), diesel samples from near-infrared measurements (Pontes et al., 2005) and soil types using laser-induced

breakdown spectroscopy (Pontes et al., 2009). The present paper proposes the use of SPA-LDA for fault detection. In this

case, the LDA classifier inputs may comprise present and time-lagged values of measured process variables. Therefore,

SPA will be applied to select not only the measurements to be considered for fault detection, but also the time lags to be

employed.

The proposed SPA-LDA fault detection technique is illustrated by using simulated data from the Tennessee Eastman

process (TEP), which is a reactor-separator-recycle system widely used as a benchmark in fault detection studies (Downs

and Vogel, 1993). For comparison, two other classification techniques are also employed, namely: (1) KNN applied to

the full set of available features and (2) LDA with feature selection by a Genetic Algorithm (GA-LDA) (Chiang and Pell,

2004). The results are evaluated in terms of overall classification performance, as well as sensitivity and false alarm rate.

2. Linear Discriminant Analysis

The purpose of Discriminant Analysis is to classify objectsinto one of several groups based on a set of features that

describe the objects. Letx = [x1, x2, . . . , xd]
T be an object that must be assigned to one out ofc possible classes. The

Linear Discriminant Analysis method employs the Mahalanobis distance (Maesschalck, Rimbaud and Massart, 2000),

which can be defined as follows. The squared Mahalanobis distancer2(x, µj) betweenx and the center of thejth class

(j = 1, 2, . . . , c) is defined as

r2(x, µj) = (x − µj)
T
Σ

−1

j (x − µj); (1)

whereµj andΣj correspond to the mean and covariance matrix of thejth class, respectively. If the true mean and

covariance values for the population are unknown (which is usually the case), maximum likelihood estimatesx̄j andSj

may be employed in place ofµj andΣj , respectively. These estimates can be obtained from a finiteset of training objects

of known classification. It is worth noting that LDA estimates a single pooled covariance matrixS, instead of using a

separate estimate for each class. This regularization procedure simplifies the classification model and results in linear

decision surfaces (hyperplanes) inR
d (Duda, 2001). With this modification, the squared Mahalanobis distance between

x and the center of thejth class is calculated according to Eq. (2). Objectx is then assigned to the classj for which

r2(x, x̄j) has the smallest value.

r2(x, x̄j) = (x − x̄j)
T
S
−1(x − x̄j); (2)

2.1 Classification features for fault detection

Suppose thatq process variablesw1, w2, . . . , wq are monitored for fault detection purposes. Letwi(t) be the measured

value ofwi at timet. A possible approach consists of usingw1(t), w2(t), . . . , wq(t) as features to classify the operation as

“normal” or “faulty” at timet. In this case, the object to be classified would be a vectorx(t) = [w1(t), w2(t), . . . , wq(t)]
T .

Given an operation log of the system at timest1, t2, . . . , tn, the training data for the classifier could be disposed in matrix

form as
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Now, consider that the measurements are acquired with a constant sampling periodT . In this case, an alternative

consists of using not only the present values, but also the past values ofw1, w2, . . . , wq as classifier inputs. In this case,

the object at timet would be

x(t) = [w1(t) w1(t − T ) w1(t − (p − 1)T ) . . . w2(t) w2(t − T ) w2(t − (p − 1)T ) . . .

. . . wq(t) wq(t − T ) wq(t − (p − 1)T )]T

where constantp defines the time window to be used. The classification features at timet would then be

x1(t) = w1(t)
...

xp(t) = w1(t − (p − 1)T )

xp+1(t) = w2(t)
...

x2p(t) = w2(t − (p − 1)T )
...

xqp(t) = wq(t − (p − 1)T )

3. The Successive Projections Algorithm for ClassificationProblems

An intrinsic limitation of LDA is the assumption that the classification features are not linearly dependent over the

training data. Otherwise, the calculation of the matrix inverse in Eq. (2) becomes ill-conditioned (Krzanowski et al.,1995).

Therefore, the use of LDA usually requires an appropriate feature selection procedure (Pontes et al., 2005; Krzanowskiet

al., 1995).

In a classification framework, the modelling information consists of a matrix of objects (X) and a class index for

each object. MatrixX has dimensions (N × K), that is,N objects withK features each. The Successive Projections

Algorithm for feature selection in classification problemswas proposed in (Pontes et al., 2005) and comprises two main

phases using two data sets: training and validation. Phase 1consists of projection operations carried out on the training

matrix X, which generateK chains ofM features each. The construction of each chain starts from one of the features

xk, k = 1, . . . , K. Each subsequent feature included in the chain is selected in order to display the least collinearity with

the previous ones. The maximum lengthM of the chain is given by

M = min(N − c, K) (3)

wherec is the number of classes considered in the problem (Duda, Hart and Stork, 2001). However, a smaller value ofM

can be imposed by the user in order to save computational time.

In Phase 2, candidate subsets of features are extracted fromthe chains and evaluated according to the average riskG

of misclassification by LDA when the subset of features underevaluation is employed. Such a cost is calculated in the

validation set according to Equation (4).

Gkm =
1

Nv

Nv
∑

n=1

gn,km; k = 1, . . . , K; m = 1, . . . , M (4)

whereNv is the number of validation objects andGkm is calculated by using the firstm features of thekth chain.

Moreover,gn,km is defined as

gn,km =
r2
km(xn, x̄In)

minIj 6=Inr2
km(xn, x̄Ij)

; n = 1, . . . , Nv (5)
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wherer2
km(xn, x̄In) is the squared Mahalanobis distance (Eq. 2) between objectxn (of class indexIn) and the sample

meanx̄In of its true class. The denominator in Eq. (5) corresponds to the squared Mahalanobis distance between object

xn and the center of the closest wrong class. Ideally,gn,km should be as small as possible, that is, objectxn should be

close to the center of its true class and distant from the centers of all other classes (in the statistical sense defined by the

Mahalanobis distance).

4. Case Study

The proposed method will be applied to the same data set of (Pei et al., 2008), which was obtained from the Tennessee

Eastman Process simulator (Downs and Vogel, 1993). The plant includes five major units: a reactor, a product condenser,

a vapor-liquid separator, a recycle compressor and a product stripper. It converts four source materials (PA, PB, PC, PD)

into two products (PG and PH).

Twenty-two process variables, listed in Table 1, are used for monitoring the operation. The sampling periodT was

set to three minutes. The faults under consideration consist of eight disturbances available in the simulator, which are

listed in Table 2. In this table, the first seven disturbancesare step changes and the last one is a random perturbation. A

simulation lasting 200 sampling periods was carried out foreach type of fault. In each simulation, the fault was inserted

after 100 samples.

Constantp (width of the time window) was set to 40. Therefore, each object was described by 880 features (22

variables times 40 lags). The objectsx(t) corresponding to normal operation were obtained fort = 40T up tot = 100T .

It is worth noting thatx(t) could not be defined fort < 40T as some of the time-lagged values would not be available.

The objects objectsx(t) corresponding to operation with fault were obtained fort = 101T up to t = 200T . For each

fault type, twenty objects were randomly selected for validation. In addition, another twenty objects were separated for

test purposes. These test objects were only used in the final evaluation and comparative analysis of the classifiers.

Table 1. Process variables available for fault detection.
Process variable Description

w1 PA feed flowrate.
w2 PD feed flowrate.
w3 PE feed flowrate.
w4 PA and PC feed flowrate.
w5 Recycle flowrate.
w6 Reactor feed rate.
w7 Reactor pressure.
w8 Reactor level.
w9 Reactor temperature.
w10 Purge rate.
w11 Product separator temperature.
w12 Product separator level.
w13 Product separator pressure.
w14 Product separator underflow.
w15 Stripper level.
w16 Stripper pressure.
w17 Stripper underflow.
w18 Stripper temperature.
w19 Stripper steam flow.
w20 Compressor work.
w21 Reactor outlet temperature.
w22 Condenser outlet temperature.
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Table 2. Simulated Faults.

Fault Disturbance
Type 1 PA/PC feed ratio.
Type 2 PB composition.
Type 3 PD feed temperature.
Type 4 Reactor cooling water inlet temperature.
Type 5 Condenser cooling water inlet temperature.
Type 6 PA feed loss.
Type 7 PC header pressure loss.
Type 8 PA, PB, PC feed composition

4.1 Evaluation Metrics

In fault detection, four results are possible:

1. True Positive (TP): the classifier indicates a fault when afault is present;

2. False Positive (FP): the classifier indicates a fault whenthe operation is normal;

3. True Negative (TN): the classifier indicates a normal operation when the operation is normal;

4. False Negative (FN): the classifier indicates a normal operation when a fault is present;

The number of TP, FP, TN and FN can be used for sensitivity (SE)and specificity (SP) calculations as

SE(%) =

(

TP

TP + FN

)

× 100% (6)

SP(%) =

(

TN

TN + FP

)

× 100% (7)

In addition, a general Accuracy Rate (AR) can be defined as

AR(%) =

(

1 −

Number of errors
Number of objects

)

× 100% (8)

4.2 Implementation details

SPA-LDA, GA-LDA and KNN classification routines were implemented in Matlab 7.6. In the KNN algorithm the

number of neighboursκ was optimized according to the number of classification errors in the validation set. If two

different values ofκ provided the same result, the average number of errors obtained withκ−1 andκ+1 was considered

to make the final decision. The GA employed standard binary chromosomes with length equal to the number of available

features (a “1” gene indicates a selected feature). The fitness of each individual was taken as the inverse of the validation

cost (Equation 4) calculated by using the features coded in the chromosome. The probability of a given individual being

selected for the mating pool was proportional to its fitness (roulette method). One-point crossover and mutation operators

were employed with probabilities of 60% and 10%, respectively. Population size was kept constant, each generation being

completely replaced by its descendants. However, the best individual was automatically transferred to the next generation

(elitism) to avoid the loss of good solutions. The GA was carried out for 100 generations with 200 chromosomes each.

The fault detection scheme adopted in the case study is illustrated in Figure 1. A classifier was obtained and tested for

each type of fault.
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CLASSIFIER 1

Normal Operation

Operation with Fault Type 1

CLASSIFIER 2

Normal Operation

Operation with Fault Type 2

CLASSIFIER n

Normal Operation

Operation with Fault Type n

Figure 1. Fault detection scheme.

5. Results

For illustration, Figure 2 presents signalw1(t) resulting from a simulation with a fault of type 5 introducedafter 100

sampling periods.
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0.245

0.25

0.255

0.26

Time (sampling periods)

ks
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Figure 2. Signalw1 (PA feed flowrate) with a fault of type 5 inserted after 100 sampling periods. The abbreviation kscmh
referring to thousand standard cubic meters per hour.

Table 3 presents the results obtained when no time lags are employed in the characterization of the objects. As can be

seen, the performance of all three classification techniques (SPA-LDA, GA-LDA and KNN) was poor. In fact, the largest

accuracy rate was 75% for fault type 8 employing SPA-LDA.

Table 4 presents the results obtained with the use of time lags. As can be seen, the classification performance was

substantially improved. Such an improvement results from abetter discrimination of the classes, as illustrated in Figures

3a and 3b for fault type 2.

As seen in Table 4, SPA-LDA and GA-LDA provided better overall results as compared to KNN. The performances

of SPA-LDA and GA-LDA were comparable, with slight differences in fault types 3 and 8. However, the SPA-LDA

classifiers were considerably more parsimonious (i.e. employed a much smaller number of features). Por example,

for fault type 6, GA selected 42 features for the LDA classifier, whereas SPA selected 29 features (as indicated by the
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(a) Discriminant frontier using features selected by SPA with time lags.
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(b) Discriminant frontier using features selected by SPA without time lags.

Figure 3. Comparison of discriminant frontier with and without time lags for classification between normal operation and
operation with fault type 2.

minimum point of the validation cost curve in Figure 4). The selected features for this fault type are shown in Figures 5(a)

and 5(b). It is worth noting that the SPA-LDA classifier only employs six process variables (w1, w2, w3, w11, w14 and

w15, with various time lags), whereas the GA-LDA classifier requires the use of nineteen process variables (w1, w2, w3,

w4, w5, w6, w7 w8, w9, w10, w11, w14, w15, w16, w17, w18, w19, w21 andw22, with various time lags). Therefore, the

SPA-LDA solution would be more convenient for engineering purposes, as less sensors would be required to implement

the fault detector.

6. Conclusions

This paper proposed a framework for use of SPA-LDA in processfault detection. For illustration, the proposed

approach was employed in a simulated case study involving the Tennessee Eastman Process. In this example, better

results were obtained by using both present and time-laggedvalues of the process variables as classification features.On

the overall, the SPA-LDA results were superior to those provided by KNN and similar to those obtained by using LDA

with features selected by a GA formulation. As compared to GA-LDA, the SPA-LDA classifiers were considerably more

parsimonious, requiring the use of less sensors to implement the fault detectors.
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These results suggest that the proposed methodology is a promising alternative for fault detection. Future works could

extend the present investigation by using SPA with other classification techniques, such as QDA (Quadratic Discriminant

Analysis).

Table 3. Results for fault detection without the use of time lags. The abbreviation NF and the symbolκ indicate the
number of features in LDA and the number of neighbours in KNN,respectively.

SPA-LDA GA-LDA KNN
Fault NF AR (%) SE (%) SP (%) NF AR (%) SE (%) SP (%) κ AR (%) SE (%) SP (%)

Type 1 1 60 20 100 7 60 20 100 3 60 20 100
Type 2 3 50 0 100 2 50 60 40 4 55 100 10
Type 3 1 60 80 40 5 50 100 0 1 55 80 30
Type 4 2 65 80 50 4 70 90 80 6 60 60 60
Type 5 1 60 100 20 4 60 80 40 13 60 50 70
Type 6 1 60 100 20 3 60 80 40 5 55 100 20
Type 7 1 50 100 0 2 60 100 20 8 50 100 0
Type 8 2 75 85 65 3 60 80 40 6 50 100 0

Table 4. Results for fault detection with the use of time lags. The abbreviation NF and the symbolκ indicate the number
of features in LDA and the number of neighbours in KNN, respectively.

SPA-LDA GA-LDA KNN
Fault NF AR (%) SE (%) SP (%) NF AR (%) SE (%) SP (%) κ AR (%) SE (%) SP (%)

Type 1 1 100 100 100 51 100 100 100 1 100 100 100
Type 2 2 100 100 100 64 100 100 100 3 100 100 100
Type 3 2 75 81 66 43 95 100 90 3 55 80 30
Type 4 1 100 100 100 44 100 100 100 29 55 10 100
Type 5 1 100 100 100 42 100 100 100 13 57 50 14
Type 6 29 100 100 100 42 100 100 100 31 100 100 100
Type 7 77 100 100 100 48 100 100 100 25 100 100 100
Type 8 2 85 62 100 64 70 80 90 1 100 100 100
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Figure 4. Validation cost as a function of the number of features selected by SPA for the detection of fault type 6. The

arrow indicates the minimum point of the cost curve (29 features).
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(a) Features selected by SPA.
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(b) Features selected by GA.

Figure 5. Result comparasion of SPA and GA algorithm for LDA model for fault type 6. The black squares point out the
selected features.
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