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Abstract. The fluid flow and heat transfer in a trapezoidal cavity were numerically analyzed in this paper. The bottom 
horizontal and upper inclined walls are adiabatic, while the vertical walls are isothermal. For the later mentioned 
walls, two thermal boundary conditions are considered. In the first one, the left short vertical wall is heated while the 
right long vertical wall is cooled. In the second one, the right long vertical wall is heated while the left short vertical 
wall is cooled. The governing equations are solved through the finite-volume method, considering steady state, two-
dimensional system and laminar conditions. Computations were carried out to examine the effects of the number of 
baffles (1 or 2), length (Wb=L/20) and location (Lb=L/3 or 2L/3, Lb1 = L/3 and Lb2 = 2L/3), and Rayleigh number (103 
≤ Ra ≤ 106). Results are displayed in terms of streamlines, isotherms, and local and average Nusselt numbers. The 
results from several case studies are presented to investigate the effect of the investigated parameters. 
 
Keywords: natural convection, trapezoidal cavities, finite-volume method, internal baffles. 

 
1. INTRODUCTION  

 
In recent years, the natural convection in cavities has been extensively investigated due to the practical interest in 

many fields of science and technology. Its application includes food processing and storage, thermal insulation of 
buildings, electrochemistry, fire control, metallurgy, meteorology, geophysics, among them.. One of the basic problems 
concerning the natural convection in rectangular cavities is the one whose vertical walls are maintained at different 
constant temperatures and the top and bottom walls are adiabatic. Gebhart (1979) and Hoogendoorn (1986) emphasized 
various aspects of natural convection flows in a square cavity. Ostrach (1988) and Bejan (2004) explained that the 
internal natural convection flow problems are more complex than the external ones, due to the interaction between the 
boundary layer and core and because the core flow is very sensitive to the geometry and to the boundary conditions. 
Several attempts have been made to shed some light on the natural convection flows into enclosures. Among of them, 
we can cite the works of Patterson and Imberger (1980), Nicolette et al. (1985), Hall et al. (1988), Hyun and Lee (1989), 
Fusegi et al. (1992), Lage and Bejan (1991), and Xia and Murthy (2002).  

However, most of these studies are restricted to the cases of simple geometry like rectangular, square, cylindrical 
and spherical cavities. Among the earlier reported studies for triangular enclosures, Karyakin et al. (1988) and 
Holtzman et al. (2000) described laminar natural convection in isosceles triangular enclosures heated from below and 
symmetrically cooled from above. Buoyancy driven flows are complex because of essential coupling between the 
transport properties of the flow and thermal fields. Del Campo et al. (1988) modeled the steady state natural convection 
in triangular enclosures in conjunction with a stream function–vorticity formulation for two aspect ratio and Grashof 
equal to 103 and 106. Their investigation is based on a symmetric boundary condition for a system heated from below. 
The solutions obtained were symmetric about the middle plane. Poulikakos and Bejan (1983) investigated the fluid 
dynamics inside a triangular enclosure. They applied the asymptotic methods of Cormack et al. (1974) to find 
approximate steady state regime and temperature distributions inside cavity when aspect ratio of the enclosure is 
vanishing. This led to the criteria, in the steady state, for the existence of distinct thermal and viscous layers along both 
the walls. This physical complexity in confined cavities is not only a topic for analysis but also has equal significance 
for numerical and experimental investigations. 

Few researches have paid attention to the natural convection in trapezoidal cavities. Iyican et al. (1980a, 1980b) 
investigated experimentally and numerically the flow and heat transfer into the trapezoidal enclosure with parallel top 
and bottom walls at different temperatures and adiabatic plane walls. A critical Rayleigh number was presented 
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depending on the angle. Lam et al. (1989) reported similar results for a trapezoidal cavity composed of two vertical 
adiabatic side walls, a horizontal hot bottom wall, and an inclined cold top wall. Karyakin (1989) has shown the 
transient results for the natural convection in an isosceles trapezoidal cavity inclined at angle φ to the vertical wall, 
where a single circulation region is found when the steady state case is investigated. The heat transfer rate is found to 
increase with the increase in the angle φ.  

Lee (1984, 1991) presented numerical results, to Rayleigh numbers up to 105, for natural convection in trapezoidal 
enclosures. Peric (1993) studied natural convection in the same geometry with refined grids and observed the 
convergence of results for independent grids. Computations in the same geometry were carried out by Sadat and 
Salagnac (1995) with Rayleigh number ranging from 103 to 2×105. Kuyper and Hoogendoorn (1995) using the same 
geometry investigated the influence of the inclination angle on the flow and also the dependence of the average Nusselt 
number on the Rayleigh number on laminar natural convection flow in trapezoidal enclosures. Moukalled and Acharya 
(1997, 2000, 2001) dealt with natural-convection heat transfer in a partially divided trapezoidal cavity with partial 
dividers attached to the lower horizontal base or the upper inclined surface of the cavity. In that last work, however, two 
offset baffles were employed. Heat transfer within trapezoidal cavity heated at the bottom and cooled at the inclined top 
part was investigated by Boussaid et al. (2003). Natural convection in another partitioned trapezoidal cavity heated from 
the side has been studied numerically by Moukalled and Darwish (2003). The effects of Rayleigh and Prandtl numbers, 
baffle height and location on heat transfer were investigated for two boundary conditions in that work. The baffles 
decrease heat transfer, with its rate increasing with the increasing Prandtl number and height baffle. 

In the present study the cavity has upper inclined and lower horizontal walls are insulated, and the left and right 
vertical walls were either heated or cooled (uniformly) by means of a constant temperature, respectively. So, the 
boundary conditions are equal to Moukalled and Darwish (2003), however in the present work, the effect of one or two 
baffles inside of trapezoidal cavity are investigated. Similar to the works of Moukalled and Acharya (1997), and 
Moukalled and Darwish (2003) the baffles are attached to the lower horizontal base of the cavity. The finite-volume 
method has been used to solve the nonlinear coupled partial differential equations for flow and temperature fields. The 
main goal of the present paper is to study the circulations and temperature distributions within the trapezoidal cavity 
and the heat transfer rate at the walls in terms of local and average Nusselt numbers.  

 
2. PHYSICAL MODEL AND GOVERNING EQUATIONS 

 
The general schematic configurations of the two-dimensional trapezoidal cavities (with one and two inside baffles) 

are shown in Fig. 1(a) along with the coordinates and boundary conditions. The grid distributions for numerical solution 
are shown in Fig. 1(b). The vertical walls of the trapezoidal cavity are heated and/or cooled at constant temperatures TH 
and TC, respectively, where TH > TC. The horizontal and inclined walls are kept adiabatic. The width of the cavity (L) is 
4 times the height (H) of the shortest vertical wall. The inclination of the upper wall of the cavity is fixed at 15o. One 
baffle height (Hb = Hb1 = Hb2 = 2H*/3), where H* is the height of the cavity at the location of baffle, one baffle 
thickness (Wb = L/20), and two baffle locations (Lb = L/3 or Lb = 2L/3, Lb1 = L/3 and Lb2 = 2L/3) are considered.  
 

 

 

  
Figure 1. (a) Physical model. (b) Grid distribution. 
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The fluid properties are assumed constant except for the variation of density in the buoyancy force term of the 
momentum equation in the y direction which is approximated by the Boussinesq approximation. Meanwhile, the flow 
field is considered to be steady state, laminar, and two-dimensional. Thus the governing equations for the fluid flow and 
heat transfer are those expressing the conservation of mass, momentum, and energy. In dimensional form, the transport 
equations are given by 
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where u (m/s) is the velocity in x-direction; v (m/s) the velocity in the y-direction, ρ (kg/m3) is the fluid density, μ (Pa.s) 
is dynamic viscosity, ν (m2/s) is kinematic viscosity, α (m2/s) is the thermal diffusivity (α = k/ρcp), β (1/K) is the 
thermal expansion coefficient of air, T0 (K) is the reference temperature, T (K) is the temperature, and g (m/s2) is the 
gravity acceleration. 

The boundary conditions associated with the governing equations (Eqs. (1) to (4)) used in this investigation are 
given below. The definition of x and y co-ordinates can be seen in Fig. 1(a). Two thermal boundary conditions are 
considered. Thus, temperature boundary conditions on the vertical surfaces in the first case are 
 

T(x = 0, y) = TC,           (5) 
T (x = L, y) = TH.           (6) 

 
In the second case these temperatures are change by T(x = 0, y) = TH and T (x = L, y) = TC. No-slip velocities on 

surfaces were assumed as shown in Eqs. (7) through (10), 
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The bottom and top walls were kept insulated. 
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The energy balance at the baffle-air interface can be stated as  
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where n  is a unit vector normal to the baffle-air interface, the subscript i refers to the interface, and kr is the ratio 
between the thermal conductivity of the baffle and the convective fluid. The Rayleigh number is defined by Ra = 

. ναβ /)( 3HTTg CH −
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3. NUMERICAL METHODOLOGY AND ANALYSIS 

 
The numerical solution of the governing equations was performed using the commercial computational fluid 

dynamics code Ansys CFX version 11.0. In this code, the conservation equations for mass, momentum and turbulence 
quantities are solved using the finite-volume method generated by structured grids. For this practice the solution domain 
is divided into small control volumes and the governing differential equations are integrated over each control volume 
with use of the Gauss theorem. The resulting discrete system of linear equations is solved using an algebraic multigrid 
methodology called additive correction accelerated incomplete lower upper (ILU) factorization technique. It is an 
iterative solver whereby the exact solution of the equations is approached during the course of several iterations. The 
solution was considered converged when the sum of absolute normalized residuals for all cells in the flow domain 
became less than 10-5. 
 
3.1. Comparing Grids 

 
The local and average Nusselt numbers along the hot or cold wall were computed from 

 

k
hlNu =             (14) 
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where l is the height of the hot or cold wall, and h (W/m2K) is the heat transfer coefficient. Based on this definition, the 
average Nusselt numbers along both walls are equal. In the present section, the number of volumes required to obtain a 
grid independent solution is determined by the local Nusselt numbers with distribution along the cold and hot walls for 
Ra = 104 and 105. Note that grid-independence tests have been conducted for all the configurations studied in this work. 
The refinement was mainly promoted at the walls of the cavity and next to baffle(s), where is expected the gradients to 
be higher. Three different computational non-uniform grids composed by 30×32, 60×64, and 120×128 grids were used, 
and some results obtained are presented in Figs. 2 and 3.  
 

 
(a)                                                                           (b) 

 
(c)                                                                        (d) 

Figure 2. Computational grids influence on local Nusselt numbers: Distribution along the (a, b) cold and (c, d) hot 
walls, for (a, c) Ra = 104 and (b, d) Ra = 105, for the buoyancy-assisting boundary condition (left wall hot), Hb = 2H*/3, 

Lb = L/3. 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

The numerical validation was conducted in terms of the local Nusselt numbers in two different positions along th
cold and hot walls, as detailed in Figs. 2 and 3, for the buoyancy-assisting boundary condition (left hot wall) and 

, respectiv

e 

buoyancy opposing boundary condition (right hot wall) ely. The computational grid independently solution for 
the domain with the left wall hot can be seen in Fig. 2(a, c) for Ra = 104 and Fig. 2(b, d) for Ra = 105, and with the right 
hot wall can be seen in Fig. 3(a, c) for Ra = 104 and Fig. 3(b, d) for Ra = 105. Because of the minor differences between 
the 60×64 and 120×128 grids, the 60×64 non-uniform grid was chosen for all the simulations presented in this work.  

The Nusselt distributions along the cold and hot walls obtained in a partitioned enclosure of baffle height Hb = 
2H*/3 located at Lb = L/3 are compared in Figs. 3(a, b) and 3(c, d), respectively. As shown, the Nusselt levels increase 
with increasing Rayleigh numbers.   

 

 
(a)                                                                         (b) 

 
(c)                                                                      (d) 

Figure 3. Computational grids influence on local Nusselt numbers: Distribution along the (a, b) cold and (c, d) hot 
walls, for (a, c) Ra = 104 and (b, d) Ra = 105, for the buoyancy-opposing boundary condition (right wa hot) ), Hb = 

 
3.
 

In order to compare the numerical solution of the present study, some solutions obtained in trapezoidal cavity with 
 some of results obtained by Moukalled and Darwish (2003). Figs. 4 and 5 

resent the isotherms and streamlines, respectively and Tabs. 1 through 4, the average Nusselt number for for L  = L/3 
and

rted. Streamlines in Fig. 5 indicates that at the lowest Rayleigh presented, Ra = 10 , the 
reci

ll 
2H*/3, Lb = L/3. 

2. Numerical Validation for one baffle 

one baffle inside have been compared with
p b

 Hb = 2H*/3 and Pr=0,7. 
Isotherms presented in Figure 4 reflect that at low Rayleigh, variations in temperature are almost uniform over the 

domain, indicating dominant conduction heat transfer mode. As Rayleigh increases, convection is promoted, and 
isotherms become more disto 3

rculation flow exhibits two vortices communicating through a very thin overall rotating eddy (Fig. 5a). These two 
vortices rotate in the clockwise direction. As Ra increases, communication between the vortices increases until at Ra = 
105 the two vortices merge into one, see Fig. 5c. Moreover, with increasing values of Rayleigh, the flow between the 
baffle and the cold wall becomes weaker as compared to the region between the baffle and the hot wall. The colder fluid 
tends to stagnate in the lower right-hand section of the cavity between the baffle and the cold wall, resulting in a 
thermally stratified region and inhibiting the penetration of the warmer fluid from the cavity left-hand section. As a 
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consequence, a jet flow directed from the cold wall to the baffle tip is observed at Ra = 106. Even though the flow in the 
lower right-hand portion of the domain is weak, the stratification effects are not strong enough to cause separation. Note 
that the results obtained in this study presented in Figs. 4 and 5 are similar to results presented in Moukalled and 
Darwish (2003). From Tabs. 1 through 4, it can be seen that the average Nusselt numbers for both, buoyancy-assisting 
and opposing modes are also in good agreement with the ones obtained by Moukalled and Darwish (2003).  

 
Moukalled and Darwish (2003) Present study  

Ra = 10  3

 

 

Ra = 104 

 

Ra = 105 

 

Ra = 106 

Figure 4. Isotherms (Hb = 2H*/3, Lb = L/3) for the buoyancy-assisting boundary condition. 
 

Moukalled and Darwish (2003) Present study  

 

Ra = 103 

 
Figure 5. Streamlines (Hb = 2H*/3, Lb = L/3) for the buoyancy-assisting boundary condition. 

 

Ra = 104 
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Ra = 105 

 

Ra = 106 

Figure 5. (cont.) Streamlines (Hb = 2H*/3, Lb = L/3) for the buoyancy-assisting boundary condition. 
 

Table 1. Average Nusselt number values ( Nu ) for cold left (short) wall and hot right (tall) wall (buoyancy-opposing 
boundary condition) fo Pr = 0.7 and L  = L/3. r b

Moukalled and Darwish (2003) Present study  
H  = 2H*/3 Hb = 0 H  = H*/3 HRa 

b = 2H*/3 Hb = 0 
3 0.6153 0.4829 0.6175 

Hb = H*/3 b
0.5080 0.4790 

b
0.5030 10

104 1.4750 0.9880 1.9220 1.4517 1.0140 1.9223 
105 3.6780 2.1456 4.4310 3.4042 2.3144 4.3409 

 

Table 2. Average  number  Nusselt values ( Nu ) for  (sho nd hot l) wall (bu opposing 
boundary condition) for Pr = 0.7 and L  = 2L/3. 

 cold left rt) wall a right (tal oyancy-
b

Moukalled and Darwish (2003) Present study  
H  = 2H*/3 Hb = 0 H  = H*/3 HRa 

b = 2H*/3 Hb = 0 
3 0.6153 0.4710 0.6175 

Hb = H*/3 b
0.5040 0.4640 

b
0.5037 10

104 1.5510 1.0720 1.9220 1.5619 1.1080 1.9223 
105 3.5640 2.2940 4.4310 3.6236 2.4361 4.3409 

 

Table 3. Averag  number e Nusselt values ( Nu ) for ht (tall) wall and hot ) wall (b assisting 
boundary condition) for Pr = 0.7 and L  = 2L/3.  

 cold rig left (short uoyancy-
b

Moukalled and Darwish (2003) Present study  
H  = 2H*/3 Hb = 0 H  = H*/3 Hb

Ra H H  = 2H*/3 Hb = 0 
3 0.7150 0.4976 0.7167 

b = */3 b
0.5670 0.4900 

b
0.5676 10

104 2.2560 1.3050 2.4800 2.2801 1.3127 2.5068 
105 5.1660 3.9450 5.4760 5.3670 4.0084 5.6942 

 

Table 4. Averag  number e Nusselt values ( Nu ) for ht (tall) wall and hot ) wall (b assisting 
boundary condition) for Pr = 0.7 and L  = L/3. 

 cold rig left (short uoyancy-
b

Moukalled and Darwish (2003) Present study  
H  = 2H*/3 Hb = 0 H  = H*/3 HRa 

b = 2H*/3 Hb = 0 
3 0.7150 0.5033 0.7167 

Hb = H*/3 b
0.5460 0.5030 

b
0.5368 10

104 2.1420 1.1310 2.4800 2.1324 1.1542 2.5068 
105 5.3030 3.5570 5.4760 5.4902 3.8112 5.6942 

 
3.3. Com ing i s and str s for two  

pectively, and Fig. 8 shows the local Nusselt number for 
Ra eigh numbers changing from 10  through 10 , for buoyancy-assisting and opposing modes. As physically expected 
the

 

par sotherm eamline  baffles
 
Figures 6 and 7 present the isotherms and streamlines, res

3 6yl
 second baffle enhance the fluid flow and therefore increase the local Nusselt number when compared with the 

situation with only one baffle. The presence of secondary vortices, for buoyancy-assisting and opposing are also 
observed when the Rayleigh number is increased. A presence of much more stratified thermal field is also verified.  
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Ra = 103 

 

 

Ra = 104 

 

Ra = 105 

 

Ra = 106 

Figure 6. Isotherms and streamlines (Hb1 = Hb2 = 2H*/3, Lb1 = L/3 and Lb2 = 2L/3) for the buoyancy-assisting boundary 
condition (left hot). 

 
Ra = 103 

 

 

Ra = 104 

 

Ra = 105 

Figure 7. Isotherms and streamlines (Hb1 = Hb2 = 2H*/3, Lb1 = L/3 and Lb2 = 2L/3) for the buoyancy-opposing boundary 
condition (right hot). 
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Ra = 106 

Figure 7. (cont.) Isotherms and streamlines (Hb1 = Hb2 = 2H*/3, Lb1 = L/3 and Lb2 = 2L/3) for the buoyancy-opposing 
boundary condition (right hot). 

 

 
(a) 

 
(b) 

Figure 8. Local Nusselt number along the (a) cold wall and (b) hot wall for the buoyancy-assisting boundary condition 
(left hot). 

 

 
(a)  

(b) 
Figure 9. Local Nusselt number along the (a) cold wall and (b) hot wall for the buoyancy-opposing boundary condition 

(right hot). 
 

4. CONCLUSIONS 
 
The natural convection in partitioned trapezoidal cavities with one and two internal baffles has been investigated in 

the present work. The conservation equations in terms of the primitive variables were solved by the finite-volume 
method. Several physical parameters, such as the number of baffles, boundary conditions (buoyancy-assisting opposing 
modes), position of the baffles were investigated. The results were presented in terms of isotherms, streamlines, and 
local and average Nusselt number. From the results, it was to observe that the second baffle intensify the fluid flow and 
the heat transfer inside the cavity. Also, the thermal stratification phenomenon is much more pronounced when 
compared with the situation with just only one baffle.  
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