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Abstract. Many environmental impacts associated to hydroelectric reservoir filling processes depend strongly on the
depth in the aquatic body, such as thermal and hydraulic stratifications, which can lead to formation of layers of different
oxygen concentrations, affecting decomposition of drown organic material. 2d approaches are often more indicated
for several environmental flows than 3d models because, for many applications, they provide predictions of adequate
accuracy in a very short processing time compared to the respective 3d simulation (actually one order of magnitude
shorter). In the specific case of hydroelectric reservoirs, the appropriate 2d model is derived by integrating across the
reservoir, which leads to the laterally averaged equations of motion. In this paper, a 2dw model (laterally averaged
model, w coming from width, analogous to 2dh model) applied to hydroelectric reservoir hydrodynamic simulations
will be presented, focusing on the analysis of thermal stratification. To arrive at the 2dw equations, the 3d equations
of momentum and mass conservation for incompressible flow and the transport equation were integrated over the
width. The resulting PDE’s system is numerically solved by the Finite Element Method and the domain is discretized
in a triangular finite element mesh, with the Galerkin Method employed to approximate the node values of velocity
components, pressure and temperature. The convective terms were time discretized according to the Semi-Lagrangian
scheme. These implementations give rise to an algebraic linear system, which is solved by the preconditioned conjugate
gradient method. Mass flux due to evaporation is regarded as boundary condition on the water surface, while non slip
boundary condition is set for the bottom. Boussinesq approximation is applied to Navier-Stokes equations, allowing
density currents to be captured by the model. Beyond presenting the 2dw equations and the numerical model, this paper
also shows a comparison between results obtained by 2dw simulations and experimental results for a lock-exchange
problem.

Keywords: laterally averaged 2d model, thermal stratification, environmental flows, Finite Element Method, hydroelectric
reservoir

1. INTRODUCTION

Hydroelectric reservoirs are related to many environmental phenomena which are strongly dependent on the depth,
such as thermal and/or hydraulic stratification and organic material transport. The changes of the main parameters as-
sociated to these problems along the reservoir depth are much more significant than the changes along the horizontal
planes.

The low velocities predominating in the reservoir hydrodynamics – which is why many times the hydroelectric reser-
voir is referred to as lake – are a favorable factor for the formation of thermal stratification, making it a common phe-
nomenon in such environments. Additionally, thermal stratification is influenced by other variables, and can sometimes
be broken, causing many perturbations in local ecosystems. Thermal stratification results in the accumulation of poor
quality water in the bottom, many times in anaerobic conditions, configuring a region of low oxygen concentrations and
high acidity. Wind and low temperatures at the lake surface, for instance, may act to brake the stratification, pushing the
bad quality water to the top, causing negative ecological impacts that influences local fauna and fauna downstream of the
dam. Many times, specially in deep reservoirs, the stratification acts as a barrier against the water from the bottom and is
controlled to avoid that it breaks.

Another issue of main importance in reservoir environments is the transport of organic material and the BOD-DO
balance. BOD (biochemical oxygen demand) is an equivalence of vegetable mass density on the aquatic phase in oxygen
demand, while DO (dissolved oxygen) is a balance of the oxygen absorbed by the aquatic system due to reareation (surface
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O2 inflow) and organic decomposition (O2 consumption), which is proportional to BOD concentration. The BOD-DO
balance in hydroelectric reservoir filling processes is associated with the hydrodynamic behavior, and this coupling is in
the core of discussions about ecological equilibrium of lakes and reservoirs.

Thus, models for predictions on ambient impacts play an increasing role on the study and control of ecological systems
wealth, especially in environments with human alterations. The objective of water quality models as management tools is
much accentuated in systems that suffer anthropogenic influence [Jorgensen, 1979]. The interactions between hydrody-
namic effects and thermal phenomena or organic matter distributions rely in the transport of such variables. Mathematical
models for water bodies like reservoirs can be classified taking into account the number of space dimensions, such as 3d,
2d, 1d and 0d. 3d models are the more sophisticated and complex, yet the more expensive to run in terms of computa-
tional costs. 2d approaches are often more indicated for several environmental flows than 3d models because, for many
applications, it provides predictions of adequate accuracy in a very short processing time compared to the respective 3d
simulation (actually one order of magnitude shorter). In the specific case of hydroelectric reservoirs, the most appropriate
2d model is derived by integrating across the reservoir [Karpik and Raithby, 1990], which leads to the laterally averaged
equations of motion.

This paper presents a laterally averaged model applied to hydroelectric reservoir hydrodynamic simulations and tem-
perature/concentration transport to predict effects of thermal stratification and distribution of chemical parameters. The
solution of the PDE’s system is approximated by the Finite Element Method, using triangular meshes for domain dis-
cretization. More details on the numerical scheme will be addressed along this paper. Comparisons between experimental
and simulation results of a gravity currents problem will be shown as a stage of code validation. Additionally, simulation
results of a hydroelectric reservoir problem will be presented to illustrate the model applicability.

2. MATHEMATICAL MODEL

The equations that constitute the model are obtained by laterally integrating the Navier-Stokes equation, the continuity
equation (assuming incompressible flow) and the transport equation, as follows∫

B

[
ρ
Dv̂
Dt
−∇ · T− ρg

]
db = 0; (1)

∫
B

[∇ · v̂] db = 0 (2)

∫
B

[
Dĉ

Dt
−∇ · (D∇ĉ)

]
db = 0 (3)

In the above equations the del operator, represented by∇, is used as divergent and gradient operators. The velocity field is
represented by v̂ and ĉ is a scalar field, which can be temperature or a certain concentration. T is the Cauchy stress tensor,
ρ is the density, g represents the gravity acceleration, given by g = gk, where g is the modulus of gravity acceleration,
and D is the diffusivity coefficient. B represents the local width. The three coordinate directions are denoted by s
(longitudinal direction), z (vertical direction) and b (lateral direction). That is why the integration element in the above
equations is db. More details about the concept of these coordinates will be explained ahead. After integrating, and taking
into account that the stress tensor is given by

T =


τss τsz τsb

τzs τzz τzb

τbs τbz τbb

 (4)

we arrive at the 2d laterally averaged equations of motion and transport (in its dimensionless form, expanded in s and z
coordinates):

∂u

∂t
+ u

∂u

∂s
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∂u
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1
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(5)
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in which Re denotes the Reynolds number and Sc is the Schmidt number, which can be calculated from Sc = ν/D, with
ν = µ/ρ, where ν is the kinematic viscosity and µ is the dynamic viscosity. The unknowns u and w represent the mean
longitudinal and vertical velocity components, respectively. If v̂ = ûi+ ŵk is the original velocity field and v = ui+wk
is the laterally averaged velocity field, the components of v are obtained by

u =
1
B

∫ B

0

ûdb (9)

w =
1
B

∫ B

0

ŵdb (10)

Similarly, the averaged concentration scalar field is given by

c =
1
B

∫ B

0

ĉdb (11)

The stresses that appear in the second term of the right side of Eq. (5) and Eq. (6) are the shear stresses in left and
right margins of the reservoir in s and z directions. Considering newtonian fluid model for an incompressible fluid, the
stress tensor can be expressed as

T = −p1 + µ
[
∇v + (∇v)T

]
(12)

where p stands for the laterally averaged pressure field. Since viscosity is assumed to be constant, we have that

∇ · (∇v)T = ∇ (∇ · v) = 0 (13)

This relation, together with Eq. (12), allows us to rewrite Eq. (5) and Eq. (6) as

B

(
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+Bg (15)

Note that the equations were both multiplied by B.

3. NUMERICAL FORMULATION

To solve the system of equations the Finite Element Method (FEM) is employed. Suppose that Eq. (14), Eq. (15), Eq.
(7) and Eq. (8) are defined in a domain Ω and let S be the subspace defined by

S = H1(Ω)m =
{
v = (v1, ..., vm)|vi ∈ H1(Ω),∀ i = 1, ...,m

}
(16)

where H1(Ω) is the Sobolev space of functions and first order derivative functions square integrable over Ω. Let L2(Ω)
be a space of infinite dimension so that

L2(Ω) =
{
v : Ω→ R |

∫
Ω

v2dΩ <∞
}

(17)

Introducing the weight functions w, q and r, the FEM implementation consists on finding solutions v ∈ S, p ∈ L2

and c ∈ L2 such that∫
Ω

B
Dv
Dt
·wdΩ +

1
ρ

∫
Ω

Bp (∇ ·w) dΩ + ν

∫
Ω

B∇v : ∇wdΩ− 1
ρ

∫
Γ

(
τL + τR

)
(w · n) dΓ−

∫
Ω

Bg ·w = 0(18)

∫
Ω

(∇ · v)BqdΩ = 0 (19)

∫
Ω

B
Dc

Dt
rdΩ +

1
ReSc

∫
Ω

(BD∇c) · ∇rdΩ = 0 (20)

where ∇ denotes 2d divergent and gradient operators. In Eq. (18), τL and τR are left and right shear stress vectors, and
the operator (:) is the tensor inner product. The Semi-discrete Galerkin method is employed for discretization of Eq. (18),
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Eq. (19) and Eq. (20), in which time derivatives remain continue. According to this method, the domain Ω is discretized
in a triangular finite element mesh. The unknowns u, w, p and c are approximated by

û(s, z, t) ≈
∑
Nu

Nu
n (s, z)un(t) (21)

ŵ(s, z, t) ≈
∑
Nw

Nw
n (s, z)wn(t) (22)

p̂(s, z, t) ≈
∑
Np

Np
n(s, z)pn(t) (23)

ĉ(s, z, t) ≈
∑
Nc

N c
n(s, z)cn(t) (24)

where Nu
n , Nw

n , Np
n and N c

n are the so-called shape functions for evaluation of the unknowns at each node n, and the
node value of each unknown is represented by un, wn, pn and cn. The number of nodes of velocity components, pressure
and scalar are denote by Nu, Nw, Np and Nc. The application of FEM consists of solving the system composed by Eq.
(18), Eq. (19) and Eq. (20) in the domain of each element (Ωe). Integrations of each term over Ωe for all elements yield

Msu̇+
1

BRe
[(2Kss +Kzz)u+Kszw] +

g

B
GsBp = 0 (25)

Mzẇ +
1

BRe
[Kzsu+ (Kss + 2Kzz)w] +

g

B
GzBp = 0 (26)

Dsu+Dzw = 0 (27)

Mcċ+
1

ReSc
(Kss +Kzz) c = 0 (28)

Note that the substantive derivatives of velocity components and scalar are respectively represented by u̇, ẇ, and ċ, which
are responsible for advection effects, and are time discretized by a Semi-Lagrangian scheme. This approach allows the
use of large time steps without limiting the stability, in contrast to the Eulerian framework. The choice of the time step is
only limited by numerical accuracy, since instabilities appear when trajectories cross and particles "overtake" others. If
4t is a finite time difference, the Semi-Lagrangian scheme approximates the substantive derivatives in a time step m+ 1
in the node n by

Dvn

Dt
≈ vm+1

n − vm
d

4t
(29)

Dcn
Dt
≈ cm+1

n − cmd
4t

(30)

where the subscript d (from departure) refers to the element from which the particle came. Time and spatial discretization
of Eq. (25), Eq. (26) and Eq. (27) give rise to an algebraic linear system in the form[

B −4 tG
D 0

] [
vm+1

pm+1

]
=
[
am+1
v

am+1
p

]
(31)

Matrices B, D and G are given by

B = M +
4t
Re

K (32)

D =
[
Ds 0
0 Dz

]
(33)

G =
[
Gs 0
0 Gz

]
(34)

and, in Eq. (32), matrices M and K are

M =
[
Ms 0
0 Mz

]
(35)

K =
[

2Kss Kzs

Ksz 2Kzz

]
(36)

The solution of Eq. (31) is obtained by means of the Projection Method, while Eq. (28) is solved separately.
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4. MESH GENERATION

In order to capture the hydrodynamic and thermal processes along the reservoir depth by a two-dimensional approach
the finite element mesh must be a vertical mesh, along a certain horizontal path. The algorithm for mesh generation was
designed for complex terrain geometries combined with hydrographic maps. Topological data are obtained from a set
of level curves that provides the reservoir bottom coordinates and the width at each point of the vertical mesh, while the
hydrographic maps provides the horizontal (or longitudinal) direction. These maps contain the coordinates associated to
the riverbed, where we believe that hydrodynamic effects will be more significant.

The next figure shows a top view, in the left side, of the terrain data for a selected region combined with the hydro-
graphic map, and, in the right side, the riverbed line (longitudinal direction). The vertical mesh – referred to as 2dw
mesh – will be generated above the riverbed (highlighted blue line), which provides bottom coordinates. The orange lines
represent the reservoir margins and are used in the calculation of the width.

Figure 1. Superposition of terrain and hydrographic data

After gathering the necessary information, the first stage is the triangulation on the terrain data [Dongala et al., 2006],
to generate the terrain mesh (not the vertical mesh yet). This step allows the interpolation of terrain coordinates at any
point of the reservoir, which will be useful for bottom and width calculations. The second step consists on projecting
the riverbed line on the reservoir bottom. Now, the vertical triangulation can be performed to assemble the vertical mesh
(third step). The next figures illustrate the process.

Figure 2. Terrain mesh Figure 3. Terrain mesh and projected riverbed

Figure 4. Superposition of terrain mesh and vertical
mesh

Figure 5. Vertical mesh (2dw mesh)
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The calculation of the width for each point of the 2dw mesh can now be performed. In the presented model, each
width Bn associated to node n is the sum of the distance from the node to left side, BL

n , and to the right side, BR
n . That is,

Bn = BL
n +BR

n (37)

This procedure is shown in the following figure.

Figure 6. Width calculation

5. CODE VALIDATION

To validate the model and the code, an experimental simulation of a density current problem [Paterson et al., 2005]
was carried out, since this is predominantly a 2d depth dependent problem. A flume was filled with two fluids of different
densities ρ: one half with a solution of salt in water (ρ = 1020Kg/m3) and the other with water (ρ = 980Kg/m3). The
heavier fluid also received an amount of sodium permanganate (NaMnO4) as tracer. The two fluids were initially separate,
until the sudden removal of the separator. In the following figures synchronized frames of experimental and simulation
processes are shown for each instant t.

Figure 7. t = 2s Figure 8. t = 3s

Figure 9. t = 5s Figure 10. t = 7s

Figure 11. t = 9s Figure 12. t = 12s
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Figure 13. t = 15s Figure 14. t = 17s

Although without a turbulence model, the simulation showed good timing results. The mixing profile can be improved
by mesh refinement, since the code took only approximately 20 minutes to reach time t = 17s.

6. RESERVOIR SIMULATION

In this section, numerical results of a reservoir simulation are reported, employing the mesh shown by Fig.5. The
domain length is 2,700m, with 80m of depth. Water inflow carries a certain solute concentration into the reservoir, with
1m/s as inflow velocity (this is a typical value). The following figures show the solution of the scalar field at four different
times t. The vertical mesh simulation is presented in the longitudinal-vertical plane.

a) b)

c) d)

Figure 15. (a) t = 13min; (b) t = 67min; (c) t = 133min; (d) t = 200min.

It can be seen by the results that the density gradient tends to keep the heavier fluid in the bottom, forming a stratified
configuration. Additionally, some vortices are originated by the flow, as shown in Fig.16.

Figure 16. Velocity field.

7. CONCLUSION

Computational code tests and experimental validation showed that the model is capable to simulate important depth
dependent environmental phenomena associated to hydroelectric reservoir for many analysis. All reservoir simulations
employing the 2dw model took less than 60 minutes to provide significant information, one order of magnitude less than a
3d simulation of the same problem. The low computational cost allows the use of very fine meshes, enhancing the quality
of numerical results. The laterally averaged model (2dw) and depth averaged model (2dh)– widely used in shallow water
simulations [Rosman, 2001] – are complementary models, which means that one can obtain satisfactory information by
combining 2dw and 2dh simulations, without the computational penalty of a heavy 3D simulation. The tool presented
in this paper also counts with a complete GUI (Graphical User Interface), where the user can manipulate all terrain,
hydrographic and mesh data, making the simulation set up easier.
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