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Abstract. The study of coupled problems considering the existence of some fluid-structure interaction, as the 
vibroacoustic problem, involves many open questions. The analysis and numerical optimization in vibroacoustic 
models, subject of this work, under defined boundary conditions, is important not only for understanding the physical 
phenomenon, but also to acquire sensitivity relative to the factors that influence the vibroacoustic response. The 
objectives of this work are: the exposition of a simple formulation for the modal analysis of vibroacoustic systems, the 
computational implementation of this formulation for comparison with results obtained from a commercial program, 
and to apply optimization. This work uses a system discretization with finite elements, by means of a non-symmetric 
matrix formulation u-p, in displacement u of the structure and pressure p of the fluid. After the modal analysis is 
realized, it is evaluated the numerical optimization of the structural mass. Some results are concerned with the 
pressure fringes in the fluid that match the structural deformation shape, which serve to verify if the structure or the 
fluid is predominant in the coupled mode. These results help to control the modal behaviour of a vibroacoustic system. 
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1. INTRODUCTION 
 

In a fluid-structure coupled system under dynamic excitation, the acoustic medium influences the behavior of the 
structure and vice versa.  The vibration of the structure is influenced by the variation of the fluid pressure and the 
acoustic waves are sensible to the variation of the structural displacement. In the context of the free vibration, the 
natural frequencies and modes of the coupled system are different with reference to the uncoupled systems. 

The energy in a coupled mode is divided between the structure and the fluid. Usually the largest amount of energy 
stays in the structure or in the fluid, from which the coupled system is classified as dominated by the structure or by the 
fluid (De Mello, 2003). 

Usually, a mode dominated by the structure is originated by a structural uncoupled mode that induces an acoustic 
mode in the fluid. Equally, a mode dominated by the fluid is an acoustic mode that induces a mode in the structure. The 
fluid influences the movement of the structure through the pressure in the interface surface, as well as the movement of 
the interface surface modifies the acoustic domain. 

The effect of the fluid pressure in the surface interface can be approximate through the term 
IsΓf , that is part of the 

excitement in the structural dynamic equation, constituted by the vectors of surface force and structural volume 
)( sBs l

ff +Γ , according to Eqs. (1) and (2): 
 

sBsssss I
ffuMuK  +Γ=+ &&  (1)
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L

ss dxq
I 0

  nf Γ  (2)

 
where ns is the vector of structural shape functions. The forces in the interface surface of the structure are originated by 
the fluid action, being associated the normal component of the surface force q to the pressure distribution on the 
interface. 

Considering the finite element method, it is possible to replace q by the expression of nodal polynomial approach for 
each finite element p~ =nf

Tp, where p~  is the approach for the scalar field of local pressures, nf is the vector of fluid 
shape functions, and p is the vector of nodal pressures of the element, and resulting the Eq. (3): 
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that represents the equilibrium condition in the interface. Substituting Eq. (3) into Eq. (1) we obtain Eqs. (4) and (5): 
 

ssfssss fpK+uMuK  =+ &&  (4)

∫−=
L T

fssf dx
0

 nnK  (5)

 
The coupling of the structural domain with the fluid domain is imposed in the normal direction n̂ of the interface 

surface, through an identity that guarantees the cinematic compatibility: 
 

nn uv ˆˆ &&& =  (6)
 

that represents an slipping condition in the tangential direction to the interface. 
Relative to the fluid domain, the fluid-structure coupling is described in terms of pressure variations in the 

neighborhood of the structural domain according to the interface boundary condition of Eq. (7), after using Eq. (6): 
 

In̂f u
n̂
p

Γ em    ,&&ρ
∂
∂

−=  (7)

 
where ρf is the fluid density. Having substituted the component in the normal direction nv ˆ

&  by nu ˆ&& , and considering the 

expression un &&&& T
su~ =  to approximate the value of n̂u&&  by n̂u~&& , or in discretized way by un &&T

s , it results the Eq. (8): 
 

ffsffff f=uM+pK+pM &&&&  (8)

 
being the matrix with the interface terms expressed by Eq. (9): 

 

∫
I

I
T
sffs d

Γ
Γnn=M  (9)

 
that allows to write the coupled system in its semi-discretized way. Rewriting Eqs. (4) and (8) together: 
 

ssfssss fpK+uMuK  =+ &&  (10)

fsfffff f=uM+pK+pM &&&&  (11)

 
that allocated in a matrix, it generates the coupled formulation u-p in structural displacement and fluid pressure: 
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For free vibrations, the second term of Eq. (12) is zero. The nonsymmetrical aspect of this formulation is its 

principal disadvantage, because it is not possible to use several efficient algorithms developed for symmetrical cases. 
The main advantage of this formulation is its reduced number of degrees of freedom to model the fluid domain, 
especially when compared with models based with more variables for the fluid domain. 
 
2. STRUCTURAL OPTIMIZATION IN VIBROACOUSTIC SYSTEMS 
 

This work looks for the dimensional optimization in vibroacoustic coupled systems, with the purpose of reducing 
the structural mass. The system is discretized with the finite element method, and the sequential quadratic programming 
SQP algorithm available in the software MSC.Nastran is used for the optimization. 

The structural domain is formed by plates, where the thickness is smaller with reference to the other dimensions. It 
is studied the optimization of the structural mass, and the thickness is chosen as the variable for the non linear 
optimization with constraints, although other choices are also possible, for example some properties of the fluid domain 
and characteristics associated to the connectivity. 

Being N the order of certain frequency, the mass optimization is written so that two constraints are satisfied, the first 
is concerned with limits of the frequency N in Hz, and the second is concerned with minimum and maximum values of 
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the plates thickness, so that the solution must be technological and mathematically possible, because the thickness must 
have physical meaning. 

The description of the optimization problem is defined by, 
 

)(Weight Optimize x         
x

=
ℜ∈

f
r

 

subject to:   U
NN

L
N ωωω ≤≤ )(x  

    máxmín xx ≤≤ x  
 

where r is the number of structural elements, )(xNω  is the Nth natural frequency exposed as function of the thicknesses 

vector x with lower L
Nω  and upper U

Nω  bounds respectively, mínx  is the vector of minimum thicknesses and máxx  is 
the vector of maximum thicknesses. 

An optimization without constraints of the thickness can lead to singular points of value zero. Also, the constraint 
máxxx ≤  can be ignored after choosing a sufficiently large value of máxx , so that the inequality is always verified. 

During the optimization process, there is no explicit control over the modes crossing. 
 
3. VIBROACOUSTIC SYSTEM: HEXAHEDRICAL CAVITY OVER A PLATE 
 

Considering the model described in Msc.Software (1996), this system is studied for showing the coupling of modes 
when the frequencies of the decoupled structural and acoustic systems are closed for the interval of analyzed 
frequencies, as well as for optimizing the structural mass. The rectangular cavity has a height five times larger than the 
side of the base. 

The software MSC.Nastran is used for simulation and optimization of the coupled system, while the software 
MSC.Patran is used for pre/post-processing the obtained results. 

 
3.1. Square plate 

 
The structure is a square plate for bending of side 20 in (0.508 m) and thickness 0.2 in (5,08 mm) supported in the 

four vertexes. The structural material is aluminum with the following properties: module of elasticity E=1.0x107 psi 
(68.948x109 N/m2), Poisson’s ratio ν=0.3 and density ρ=2.54 x10-4 lb-s2/in4 (2700 kg/m3). Experimental and numerical 
studies with similar properties were conducted by Petyt and Mirza (1972) and Reid (1965). 

The plate is discretized with a mesh (8x8), counting 64 two-dimensional elements CQUAD4 of four nodes each and 
totaling 81 nodes. The boundary conditions are u=v=rz=0 entirely in the plate. Additionally, it is considered the 
displacement of the vertexes equal to zero, z=0, as shown in Fig. 1. 

 

 
 

Figure 1. Mesh of the square shaped plate with indication of the boundary conditions 
 
The natural frequencies are compared, in Tab. 1, with analytical solutions. The average variation of the results of 

MSC.Nastran in relation to the analytical ones for the first two frequencies is 0.69%, value considered appropriate if 
observed that the maximum variation is only 0.39 Hz. 
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Table 1. Predicted frequencies in Hz of a square plate supported in the vertexes 
 

Mode Analytical 
(Blevins, 1995) 

MEF 
MSC.Nastran 

Variation (%)  
MSC.Nastran / analytical 

Variation Hz  
MSC.Nastran / analytical 

1 34.02 34.41 1.15 0.39 
2 75.50 75.67 0.23 0.17 
3  75.67   
4  94.78   
5  191.56   
6  214.55   
7  252.84   
8  252.84   
9  343.86   

10  404.14   
 
It is observed in Fig. 2 two modes, the second and the third one, with different modal patterns but with identical 

frequencies because of the symmetry. 
 

   
a) Mode 1   b) Mode 2   c) Mode 3 

 

   
d) Mode 4  e) Mode 5   f) Mode 6 

 
Figure 2. Modal patterns of the square plate supported in the vertexes 

 
3.2. Hexahedrical acoustic cavity 

 
The dimensions of the system are: sides of base equal to 20 in (0.508 m) and height equal to 100 in (2.54 m). The 

internal fluid is air with density ρf=1.21x10-7 lb-s2/in4 (1.29 kg/m3) and sound velocity cs=13000 in/s (330.2 m/s). 
The cavity is discretized through a mesh (8x8x8) of hexahedrical solid elements CHEXA of 8 nodes each one, 

totaling 512 elements and 729 nodes. The boundary conditions correspond to rigid walls, Fig. 3. 
 

 
Figure 3. Mesh of the rectangular cavity with boundary conditions of rigid wall on faces 
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The obtained natural frequencies are compared, in Tab. 2, with analytical solutions according to Eq. (13), (Blevins, 

1995); observing that the walls of the cavity are considered as rigid with infinite impedance. 
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where, 
f : natural frequency in Hz; 
cs : sound velocity at medium, in this case air, equal to 343.3 m/s; 
Lx, Ly, Lz : length, width and height of the cavity. 
 

The variation of the MSC.Nastran results relative to the analytical ones is 3.92% for the first twenty frequencies. 
The maximum difference is 38.2 Hz (11.52%) for the frequency of order 15. These set of results supplies sufficient 
conformity, especially for the first frequencies. 

 
Table 2. Predicted frequencies of the hexahedrical acoustic cavity in Hz 

 
Mode Notation  

(i,j,k) 
Analytical 

(Blevins, 1995) 
MEF 

MSC.Nastran 
Variation (%)  

MSC.Nastran / analytical 
Variation Hz  

MSC.Nastran / analytical 
1 (0,0,0) 0.00 0 0 0 
2 (0,0,1) 65.00 65.41 0.63 0.26 
3 (0,0,2) 130.00 133.36 2.58 2.14 
4 (0,0,3) 195.00 206.37 5.83 7.27 
5 (0,0,4) 260.00 286.69 10.27 17.24 
6 (0,0,5) 325.00 327.09 0.64 1.33 
7 (0,1,0) 325.00 327.09 0.64 1.33 
8 (1,0,0) 325.00 333.56 2.63 7.80 
9 (0,1,1) 331.44 333.56 0.64 1.36 

10 (1,0,1) 331.44 353.23 6.58 20.63 
11 (0,1,2) 350.04 353.23 0.91 2.03 
12 (1,0,2) 350.04 374.88 7.10 8.32 
13 (0,1,3) 379.01 386.75 2.04 4.93 
14 (1,0,3) 379.01 386.75 2.04 4.93 
15 (0,0,6) 390.00 434.94 11.52 38.20 
16 (0,1,4) 416.20 434.94 4.50 12.00 
17 (1,0,4) 416.20 462.57 11.14 29.70 
18 (0,0,7) 455.00 465.88 2.39 6.51 
19 (0,1,5) 459.62 467.18 1.64 6.48 
20 (1,0,5) 459.62 481.41 4.74 20.43 

 
3.3. Hexahedrical acoustical cavity over a square plate 

 
Ths system is modeled as a fluid-structure system. The plate is modeled through two-dimensional elements 

CQUAD4, with dimensions and material specified in section 3.1. The cavity is modeled with hexahedrical solid 
elements CHEXA, with dimensions and fluid properties specified in section 3.2. 

The vertexes displacements of the plate are equal to zero. Then, the boundary conditions of the entire plate are 
u=v=rz=0  and still in its vertexes z=0. The boundary conditions of the cavity are equivalent to rigid walls. 

The adopted discretization results in a mesh of 64 two-dimensional elements of plate CQUAD4 of four nodes each 
and 512 hexahedrical solid elements CHEXA of eight nodes each one, totaling 576 elements and 810 nodes. 

The coupled frequencies obtained with the MSC.Nastran are shown in Tab. 3, where they are compared relative to 
the uncoupled ones. The average variation of the first thirty frequencies with predominance structural is -1.34Hz (-
0.006%), for the frequencies with the fluid as the predominant medium is 0.92Hz (0.004%), and for all the frequencies 
is 0.091Hz (0.001%). The maximum value of the variation is -9.93 Hz (-0,03%). 
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Table 3. Predicted frequencies of the hexahedrical cavity over a square plate in Hz 
 
Plate 

MSC.Nastran 
Cavity MSC. 

Nastran 
Decoupled 

mode 
Coupled 

mode 
Coupled 

MSC.Nastran 
Coupled 

MEFLAB 
Variation (%) 

coupled 
MEFLAB / 

MSC.Nastran 

Variation Hz 
coupled 

MEFLAB - 
MSC.Nastran 

 0 F1 1 0 0 0 0 
34.41  S1 2 34.22 34.26 0.12 0.04 

 65,41 F2 3 67.36 64.9 -3.65 -2.46 
75,67  S2 4 75.22 75.66 0.58 0.44 
75,67  S3 5 75.22 75.66 0.58 0.44 
94,78  S4 6 94.55 93.79 -0.80 -0.76 

 133,36 F3 7 134.17 133.16 -0.75 -1.01 
191,56  S5 8 190.73 185.58 -2.70 -5.15 

 206,37 F4 9 206.65 206.36 -0.14 -0.29 
214,55  S6 10 214.4 210.63 -1.76 -3.77 
252,84  S7 11 252.18 243.19 -3.56 -8.99 
252,84  S8 12 252.18 243.19 -3.56 -8.99 

 286,69 F5 13 287.23 286.56 -0.23 -0.67 
 327,09 F6 14 327.24 327.05 -0.06 -0.19 
 327,09 F7 15 327.24 327.05 -0.06 -0.19 

343,86  S9 16 333.90 331.96 -0.58 -1.94 
 333,56 F8 17 339.90 333.49 -0.12 -0.41 
 333,56 F9 18 343.48 333.49 -2.91 -9.99 
 353,23 F10 19 353.56 353.16 -0.11 -0.4 
 353,23 F11 20 353.56 353.16 -0.11 -0.4 
 374,88 F12 21 375.36 374.76 -0.16 -0.6 
 386,75 F13 22 387.03 380.97 -1.57 -6.06 
 386,75 F14 23 387.03 380.97 -1.57 -6.06 

404,14  S10 24 403.54 386.61 -4.20 -16.93 
404,14  S11 25 403.54 386.61 -4.20 -16.93 

 434,94 F15 26 435.34 434.85 -0.11 -0.49 
 434,94 F16 27 435.34 434.85 -0.11 -0.49 
 462,57 F17 28 462.68 447.78 -3.22 -14.9 
 465,88 F18 29 466.29 462.55 -0.80 -3.74 
  F19 30 467.40 465.73 -0.36 -1.67 

 
It is also verified in Table 3 the average variation of the first thirty coupled frequencies obtained by our finite 

element program MEFLAB relative to the decoupled ones obtained by the software MSC.Nastran; for frequencies with 
structural predominance it results -1,83%, for frequencies with predominance of the fluid medium it results -0,85% and 
for all of the frequencies it results-1,21%. The maximum absolute value of the variation is 16,93 Hz (4,20%) for the 
mode 24. This set of results displays the correspondence between MEFLAB and MSC.Nastran. 

 
3.4. Structural mass minimization of the vibroacoustic system 

 
Table 4 shows the natural frequencies before and after the mass optimization, where the thicknesses of the eight 

rows of the plate are the variables of the problem, as indicated in Tab. 5. The two constraints are relative to the 
minimum and maximum limits for the thickness, 0.01 in (0,0254 mm) and 1 in (25,4 mm) respectively, and the lower 
limit of 25 Hz for the second coupled natural frequency. As consequence, it is observed that the second coupled natural 
frequency decreases 9.21 Hz (26.9%). 

Table 5 shows that thicknesses reduced on average 0.066 in (1.676 mm), equivalent to 33%. The maximum 
reduction is 0.091 in (2.314 mm) or 45.5%. 
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Table 4. Natural frequencies after mass optimization in Hz 

 
Mode Frequency before optimization Frequency after optimization 

1 0.00 0.00 
2 34.22 25.01 
3 67.36 52.67 
4 75.22 55.63 
5 75.22 60.75 
6 94.56 67.91 
7 134.18 134.22 
8 190.73 134.43 
9 206.65 145.76 

10 214.41 150.27 
 

Table 5. Variables for mass optimization 
 

Variable Original value Optimized value 
P1 0.2 pol (5.08 mm) 0.17718 pol (4.500mm) 
P2 0.2 pol (5.08 mm) 0.10888 pol (2.765 mm) 
P3 0.2 pol (5.08 mm) 0.12651 pol (3.213 mm) 
P4 0.2 pol (5.08 mm) 0.12651 pol (3.213 mm) 
P5 0.2 pol (5.08 mm) 0.12352 pol (3.137 mm) 
P6 0.2 pol (5.08 mm) 0.10888 pol (2.765 mm) 
P7 0.2 pol (5.08 mm) 0.17718 pol (4.500 mm) 
P8 0.2 pol (5.08 mm) 0.12352 pol (3.137 mm)  
 
Fig. 4 shows the history of variables and objective function during the five iterations required for the optimization. 
 

Design variables (in) Objective function (lb s2/pol) 

  

 
Figure 4. Iterations during the mass minimization 

 
Table 6 shows the mass before and after the structural optimization. The structural mass reduces from 3.537 kg to 

2.3706 kg, characterizing a reduction of 1.1664 kg (33%). 
Figs. 5 and 6 show the modal shapes of modes 2, 3 and 4 of the coupled model as non-optimized and optimized 

respectively, being observed that the fringes of fluid pressure match the structural deformation in both cases. This 
serves to understand if the structure or the fluid predominates in the mode. From this consideration, it is observed that 
the third optimized coupled mode has the structure as predominant instead of the fluid, as can be seen in the non-
optimized case. The third coupled frequency reduces from 67.36 to 52.67 Hz, meaning a variation of 14.69 Hz 
(21.81%). 
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Table 6 Mass of the system before and after the optimization. 
 

Subsystem Original volume 
in3  (m3) 

Optimized volume 
in3  (m3) 

Density 
lb s2/in4  (kg/m3) 

Original mass 
lb s2/in  (kg) 

Optimized mass  
lb s2/in  (kg) 

Fluid 40000 (0.655) 40000 (0.655) 1.27 x 10-7 (1.29) 0.057 (0.844) 0.057 (0.844) 
Plate 80 (1.31 x 10-3) 53.609 (8.78 x 10-4) 2.65 x 10-4 (2700) 0.021 (3.537) 0.014 (2.370) 
Total 40080 (0.657) 40053.609 (0.656) --- 0.078 (4.381) 0.071 (3.215) 
 

        

a) Structural deformation     b) Fringes of fluid pressure 
Mode 2: frequency 34.22 Hz, predominance of the structure. 

 

        
a) Structural deformation     b) Fringes of fluid pressure 

Mode 3: frequency 67.36 Hz, predominance of the fluid. 
 

        

a) Structural deformation    b) Fringes of fluid pressure 
Mode 4: frequency 75.22 Hz, predominance of the structure. 

 
Figure 5. Coupled modes before the optimization 
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a) Structural deformation     b) Fringes of fluid pressure 

Mode 2: frequency 25.01 Hz, predominance of the structure. 
 

        
a) Structural deformation     b) Fringes of fluid pressure 

Mode 3: frequency 52.67 Hz, predominance of the structure. 

 

        
a) Structural deformation     b) Fringes of fluid pressure 

Mode 4: frequency 55.63 Hz, predominance of the structure. 
 

Figure 6. Coupled modes after the optimization 
 

4. CONCLUSIONS 
 
The coupled natural frequencies of the system composed by a hexahedrical cavity on a square plate are compared 

with the decoupled frequencies, through the simulation in MSC.Nastran. The average variation of the first thirty 
frequencies predominantly structural is -1.34%, for the frequencies predominantly fluid is 0.92%, and for all 
frequencies is 0.091%. The maximum variation value is -9.93 Hz. 

During the mass minimization of the coupled system the structural mass decreases from 3.537 kg to 2.370 kg, 
characterizing a reduction of 1.166 kg (33%). 
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In a coupled system, the pressure fringes in the fluid match the structural shape deformation. This information and 
the decoupled frequencies values serve to infer if the structure or the fluid prevails in the coupled mode. If the fluid 
pressure fringes show a discontinuous behavior, probably the coupled mode is originated from the structural mode. If 
the structural deformation shows a discontinuous behavior, probably the coupled mode is originated from the fluid 
mode. 

Once identified the original domain that drives the optimized coupled mode, it is possible to control better the 
coupled mode behavior due to some excitement. 
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