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Abstract. The simulation of hydroelectric power plant reservoir flooding flows is becoming a very important issue to
forecast the environmental impact of the drowned vegetation decomposition. To deal with this, we resolve the Navier-
Stokes equation with scalar transport in a complex domain, using a finite element method approach as a discretization
technique. As a part of that simulation process, several linear systems of equations have to be solved during the nonlinear
iteration process at each time step, and this task is the most time consuming part of whole work. In order to improve that
process, we study in this paper the performance characteristics of the resolution of those large linear systems on a Beowulf
cluster, a set of parallel computers with a distributed and shared memory architecture. We employ a set of solvers and
preconditioners available on PETSc, a library for a distributed and shared memory architecture, based on MPICH, BLAS
and LAPACK. Finally, we present the performance obtained with several solver, precondition and reordering techniques.
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1. INTRODUCTION

The enviromental impact of hydroelectric power plant reservoir flooding flows is becoming a very important issue to
forecast the environmental impact of the drowned vegetation decomposition. In order to evaluate this impact we need to
resolve complicate system of partial differential equations in quite complex domain, that is, RANS (Reynolds Average
Navier Stoke) equations with scalar transport, using finite element aproach. At the core of this work, as a result of the
space-time discretization, we need to solve several large linear system of equation. On the other hand parallel computation
had been quite succesfull in cientific computing applications see [Gupta2003]. Thus, to deal with the current problem, it
is natural that we take advantage of the extensive development of both hardward and software for parallel computation.

The main goal is to reduce the global simulation time. As a first step we focus in the resolution of the linear system,
which is the most time consuming part. Basically there are two approachs, direct and iterative methods. The first approach
has the advantage of being robust and accurate, however with high resolution of three-dimensional models as well as
models that incorporate more complex phenomena, the computational costs increases, and the second approach become
relevant, due to its lower computational costs, even though the covergence isn’t guaranteed, see [Saad2000]. The critical
succes of the iterative methods is the preconditioner.

As a starting point, we carry out experiments to evaluate the behavior of direct and iterative preconditioned solver, in
a cluster platform. Also, we evaluate the influence of the reordering technique on both types of solvers.

2. GOVERNING EQUATIONS AND DISCRETE FORMULATION

The system of equations cosidered is the Reynolds Average Navier Stoke (RANS) and mean scalar transport, as show
below,
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where Ui is the velocity vector, P the pressure, Θ the scalar quantity (e.g. temperature), β the thermal expansion
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coefficient, Sθ a source or a sink of Θ, αeff the effective molecular (heat or mass) diffusivity coeficient, νeff effective
kinematic viscosity and gi is the gravity component for details see [Pope2000] and [Batchelor2000].

The boundary conditions

Ui = UΓi on Γi;
∂Ui
∂xn

= UΓ ci on Γ ci (i = 1, 2, 3) (4)

P = PΓp on Γp;
∂P

∂xn
= PΓ cp on Γ cp (5)

Θ = ΘΓθ on Γθ;
∂Θ

∂xn
= ΘΓ cθ on Γ cθ (6)

and initial conditions

Ui = Uit0 P = Pt0 Θ = Θt0 in Ω at t = t0 (7)

where Ω is the domain of the differential equations system, and Γ = Γξ ⊕ Γ cξ (Γ = Γξ ∪ Γ cξ and Γξ ∩ Γ cξ = ∅) are
the boundary of Ω, i.e., Γ = ∂Ω, are applied.

Considering the discretized domain Ωh, we obtain the semidiscrete variational aproach of (1), (2) and (3), as follows

∫
Ω

∂wp
∂xi

UidΩ =
∫
Γ cp

wpUinidΓ (8)

∫
Ω

wi
DUi
Dt

dΩ− 1
ρr

∫
Ω

∂wi
∂xi

PdΩ +
∫

Ω

νeff
∂wi
∂xj

(
∂Ui
∂xj

+
∂Uj
∂xi

)
dΩ +

∫
Ω

wiβΘgidΩ

= − 1
ρr

∫
Γ ci

wiPnidΓ +
∫
Γ ci

νeffwi

(
∂Ui
∂xj

+
∂Uj
∂xi

)
njdΓ

(9)

∫
Ω

wθ
DΘ

Dt
dΩ +

∫
Ω

αeff
∂wθ
∂xj

∂Θ

∂xj
dΩ =

∫
Γ cθ

αeffwθ
∂Θ

∂xj
njdΓ +

∫
Ω

wθSθdΩ (10)

where the wp, wi(i = 1, 2, 3) and wθ are weighting functions that belong to the subspaceH1
0, more explanation of this

formulation can be viewed in [Zienkiewiczb2000a], [Zienkiewiczb2000b], [Hughes2000] and [Lewis2004]. Thus, using
the Galerkin approach and the finite element discretization technique, we can write (8), (9) and (10) in matrix form as
follows,

Dũ = bcn1 (11)

Mρ
˙̃u−Gp̃ + Kρũ + βgFθ̃ = bcn2 (12)

Mθ
˙̃
θ + Kθ θ̃ = bcn3 (13)

In this manner we obtain a system of ordinary differential equations, where D is the divergence matrix, G is the
gradient matrix, Mρ is the mass matrix, Kρ is the momentum diffusion matrix, Mθ is the scalar mass matrix, Kθ is the
scalar diffusion matrix.

Next, to time discretization we employed the Semi-Lagrangian method. This technique contributes to a significant
enhancement of the efficiency of the semi-implicit integration scheme, see [Robert1984]. Equations 11, 12, and 13 with
time discretization read as

Dũn+1 = bcn1 (14a)
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where, λ is a parameter to obtain different methods of discretization in time. For, λ = 0 results a explicit discretization,
λ = 1 results a semi-implicit discretization and λ = 1

2 results the Crank-Nicolson method.
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The linear equations system 14 is solved employing the block LU approximate factorization, also called projection
method, resulting in the follows linear system,

M′ρû
n+1 = rnu + bc1 (15)

∆tDM′−1
ρ Gp̃n+1 = −Dûn+1 + bc2 (16)

M′θ θ̃
n+1 = rnθ + bc3 (17)

ũn+1 = ûn+1 + ∆tM′−1
ρ Gp̃n+1 (18)

This method relies on the Helmholtz-Hodge decomposition, which say that any vector can be decomposed into a
component of a zero divergence and another with zero curl.

We need to solve this large system of equations in each times step, consequently this task is the most consuming part.
Clearly this job should be optimized reducing the execution time. In order to do that, we have been performing several
test on both direct and precondiotioned interative solver combined with reordering technique. We know the propertis of
matrix M′ρ is symmetric and positive definite (SPD), therefore we use conjugate gradient method as a primary iterative
method, that has well known behavior with this kind of matrix see The resulting linear system of equation are solved
using precontioned GMRES on the case of DM′−1

ρ G.To improve the converge we employ reordering technique on the
precondiotioner. We also employ direct solvers in both case.

3. DIRECT AND ITERATIVE METHODS ON PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) see [Balay et al.2009] and [Balay et al.2008], is
a suite of data structures and routines that provide the building blocks for the implementation of large-scale application
codes on parallel (and serial) computers. This library provide an important set of both parallel and serial solver collect
in one generic context called KSP, allowing the user to choose the type of solver and preconditioning to be used for
this context by changing a run-time option. This design makes it easy to compare the performance of many solver for a
problem and determine the optimal method of solution. The design of PETSc was oriented to a problem rather than to an
especific algorithm, see [Gropp1997a] and [Gropp1997b].

This library also allow the user to log program performance and obtain information of the code behavior such us
floating point operation (flop) rates, message passing activity and memory usage. Another interesting feature allows users
to utilize external packages and solvers including parallel direct and multigrid solvers, whithout changing the users code.

The complete list of solvers can be founded on PETSc Web Page see [Balay et al.2009].

4. NUMERICAL EXPERIMENTS

In the numerical experiments we tested the direct solver LU and Cholesky factorization, combined with following
reordering tecniques Nested Dissection, One-way Dissection, Reverse Cuthill-McKee, Quotient Minimum Degree, all
available in the library. The direct solver are available only on uniprocess mode, for multiprocessor mode we should use
an external package.

Next, we test the solvers GMRES(k) ([Saad1986]) and Cojugate Gradient CG with block jacobi precondiotioners, in
both serial and parallel form, using ILU(k) and ICC(k) on each block. In uniprocess the precondiotioner lead to an ILU
or ICC factorization case.The initial guess was the zero vector.

For this experiment we used two different 3-dimensional meshes with homogeneus Dirichlet boundary conditions.
Mesh 1 (4500 elements) and Mesh 2 (131422 elements) have the form showed in Fig. 1, these represent the confluence of
a river on a brand of reservoir. A feactures summary of the used meshes are showe in Tab (1).

Table 1. Mesh Feactures Summary

Feactures Mesh 1 Mesh 2
Number of Elements 4500 131422

Number of Node 1632 25322
NDoF/node 5 5

Type Unstructured Unstructured
Element Type Tetraedral Tetraedral
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Figure 1. The used domain representing the confluence of a river on a brand of reservoir

4.1 Numerical Results

We presents the numerical results in two parts. Firts using direct solver and second using iterative solver, on each
mesh. In the first part (4.1.1) we tested the behavior of combinations of direct solver with different reorder technique,
showing the fill-in ratio between number of non zeros new entries in the factorized matrix and the number of non zeros on
the original matrix, Flops numbers of floating points operation per seconds, and the CPU time in seconds.

In the second part ( 4.1.2) we show the result for parallel tests using precondiotioned iterative solve. Basically, we use
block Jacobi precondiotioner combining with different reordering technique. Tests were made from 1 to 8 processors, in
each trial we measure the CPU time in seconds, number of iterations and Flops.

Tables (2) to (8)show the numerical result, that we are obtained. From (1) to (3) correspond to the velocity matrix M′ρ,
Tab. (1) and (2) correspond to the test with direct solvers and Tab. (3) correspond to the parallel case with iterative method.
In the case of LU factorization, from Tab. (1) we can see that the best result obtained was with Quotient Minimun Degree
in terms of fill-in and MFlops, but in terms of CPU time was Nested Disection. In the case of Cholesky factorization we
can conclude the same.

4.1.1 Using Direct Solvers

As an ilustration in the Fig. 2, we draw the reordered matrix in each case. Tables (2), ( 3) and 4 correspond to the
test with direct solvers on both meshes. In the case of LU factorization, from Tab. (2) and (4) we can see that the best
result obtained was with Quotient Minimun Degree in terms of fill-in and MFlops, but in terms of CPU time was Nested
Disection. In the case of Cholesky factorization we can conclude the same thing. For the pressure matrix M′ρ case we
see that the best result was obtained with Reverse Cutchill McKee, in terms of fill-in and MFlops. On the other hand we
obtain the lower CPU time with Nested Dissection.
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(a) (b) (c)

(d) (e)

Figure 2. Differents Reordering Techniques for Velocity Matrix - M′ρ: (a) Natural Ordering. (b) With QMD algorithm.
(c) With RCM algorithm. (d) With ND algorithm. (e) With 1WD algorithm.

Table 2. Measurement of performance with LU factorization of the velocity matrix - M′ρ.

Velocity - M′ρ
Mesh 1 Mesh 2

Solver Reorder Technique Fill-in MFlops CPU Time(s) Fill-in MFlops CPU Time(s)

LU

Natural 628.13 2.27e+06 4430.11 N.E.M* N.E.M N.E.M
QMD 2.376 41.97 0.615853 9.932 1.708e+05 588.452
RCM 5.42494 132.0 0.29305 N.E.M N.E.M N.E.M
ND 2.53 46.0 0.1664421 8.76567 1.327e+05 271.26058

1WD 7.63281 300.0 0.705649 58.5736 1.057e+06 2710.68

Table 3. Measurement of performance with Cholesky factorization of the velocity matrix - M′ρ.

Velocity - M′ρ
Mesh 1 Mesh 2

Solver Reorder Technique Fill-in MFlops CPU Time(s) Fill-in MFlops CPU Time(s)

Cholesky

Natural 314.084 591.1 7349.0 N.E.M* N.E.M N.E.M
QMD 1.20781 3.28 0.771177 4.983 2.95e+02 739.27634
RCM 2.73 6.14 0.544599 5.424 132.0 0.29305
ND 1.2866 3.43 0.2896601 4.40 2.646e+02 402.806

1WD 3.83599 8.21 1.329501 N.E.M N.E.M N.E.M

N.E.M.: Not Enough Memory

4.1.2 Using Precondiotioned Iterative Solvers

The results in the parallel case are reported in Tab. (5) to (8). In the velocity case we obtain a reasonable scalability,
see Tab. (5) and (6). Anyway, the best combinationg result with CG plus natural reordering, in terms of CPU time. Tables
(7) and (8) shows the results for pressure matrix case, the best performance obtained was with Reverse Cutchill Mckee.
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Table 4. Measurement of performance with LU factorization of the pressure matrix - DM′−1
ρ G

Pressure - DM′−1
ρ G

Mesh 1 Mesh 2
Solver Reorder Technique Fill-in MFlops CPU Time(s) Fill-in MFlops CPU Time(s)

LU

Natural 9.78 92.15 0.30 628.13 2.27e+06 4430.11
QMD 4.385 19.36 0.17 24.71 3.768e+04 76.84751
RCM 3.83964 13.09 0.18 27.99 3.477e+04 66.89325
ND 4.88 24.32 0.04052393 22.96 3.328e+04 66.927

1WD 6.23 35.54 0.05319892 28.48 3.598e+04 69.48

Table 5. Measurement of parallel performance with preconditioned iterative method of the velocity matrix - M′ρ.

Velocity - Mesh 1

Preconditioned Solver Reorder Tecnique Number of Process
1 2 4 6 8

CG+Block Jacobi

Natural 0.230/40/94.45 0.0721/37/39.03 0.0867/69/29.56 0.132/70/23.8 0.13368344/70/20.60
QMD 0.584/8/21.95 0.148/8/9.28 0.108/62/26.26 0.088/61/20.65 0.100/62/18.24
RCM 0.1404/13/32.47 0.0503/15/16.1 0.0827/66/27.93 0.1054/64/21.63 0.145/68/19.950
ND 0.128/8/22.02 0.048/10/11.25 0.0804/64/27.09 0.136/62/20.98 0.093/63/18.53

Table 6. Measurement of parallel performance with preconditioned iterative method of the velocity matrix - M′ρ.

Velocity - Mesh 2

Preconditioned Solver Reorder Tecnique Number of Process
1 2 4 6 8

CG+Block Jacobi

Natural 2.27819/4/963.9 1.04783/6/333.5 0.831251/8/129.3 0.855934/8/98.7 0.88327/8/83.31
QMD 2.2794/4/963 28.5604/6/234.5 5.9203/8/108.4 2.67/8/87.1 2.302/8/76.44
RCM 2.2837/4/963.9 1.45026/6/242 0.83278/8/109.5 0.7897/8/87.48 0.7966/8/76.42
ND 4.37846/3/408.8 1.74282/6/233.9 1.03316/8/108.3 1.00/8/87.03 1.009145/8/76.37

Table 7. Measurement of parallel performance with preconditioned iterative method of the pressure matrix - DM′−1
ρ G

Pressure - Mesh 1

Preconditioned Solver Reorder Tecnique Number of Process(*)
1 2 4 6 8

GMRES+Block Jacobi

Natural 0.011/28/9.63 0.01786/63/10.41 0.022/70/5.63 0.0384/107/5.65 0.071798/127/5.01
QMD 0.03029/43/14.20 0.025/65/10.72 0.0234/70/5.65 0.0024/110/5.83 0.0576/123/4.89
RCM 0.01324/19/6.30 0.011/32/5.50 0.0173/60/4.96 0.0302/70/3.71 0.0627/117/4.631
ND 0.0283/57/19.08 0.022/63/10.51 0.033/73/5.89 0.0567/111/5.89 0.0698/131/5.15

(*) The data should be read as the following CPU time (s)/Iterations/MFlops

Table 8. Measurement of parallel performance with preconditioned iterative method of the pressure matrix - DM′−1
ρ G

Pressure - Mesh 2

Preconditioned Solver Reorder Tecnique Number of Process(*)
1 2 4 6 8

GMRES+Block Jacobi

Natural 39.07/2144/1.586e+04 118.33/9000/3.76e+04 41.236/5609/1.06e+04 33.93/4908/6.15e+03 38.543/5543/5.16e+03
QMD 38.6379/1868/1.38e+04 48.42005/4493/1.69e+04 40.238/5996/1.13e+04 49.48/7826/9.8e+03 24.668/4169/3.88e+03
RCM 14.43348/747/5.55e+03 107.05/5000/3.76e+04 43.046/5665/1.076e+04 24.51/3526/4.42e+03 42.693/5920/5.51e+03
ND 38.029/1900/1.407e+04 107.36/7000/3.763e+04 37.86/5688/1.081e+04 51.08/8248/1.03e+03 30.41/5098/4.75e+03

(*) The data should be read as the following CPU time (s)/Iterations/MFlops

5. CONCLUSIONS

In this work we evaluate direct and iterative solver available in PETSc library. In the velocity case, with direct solver
the best result obtained was with RCM algorithm, and with iterative was with CG with natural reordering. In the pressure
case, good results are obtained with RCM algorithm on both direct and iterative solver. As a future work, we are planning
to use parallel direct solver to perform the factorizations.
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