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Abstract. New techniques of fault detection and localization at mechanical systems that are dynamically loaded have 

been developed to attend the industry demand caused by the technology progress. Even the tools for theoretical 

analysis of dynamic systems being sophisticated, there are great difficulties at the prediction of the dynamic behavior 

of some structural components and at the fault diagnosis, caused by the inaccuracy of the theoretical model, or caused 

by the difficulty on measuring some state variables. The methodology of state observers is perfectly inserted on this 

reality, because its capability of estimate the state variables of a system based on the measurement of the output and 

control variables. The methodology becomes more attractive because it makes possible the reconstruction of the states 

where the measurement is hard or just impossible, detecting failures at points that are not available to be measured 

and monitored trough the reconstruction of its states. Because of the magnitude of its effects, the crack nucleation or 

propagation demands essential care at mechanical systems. Knowing that this kind of fault can appear with the 

deterioration caused by vibrations and dynamical conditions, it becomes an excellent object for studying the use of the 

State Observers methodology to detect, locate and evaluate cracks conditions. For the suggested system, a coupled 

cantilever beam, were used a Finite Element Method, which showed itself the best one to do this kind of analysis, with 

beam elements at an elastic foundation, obeying a crack model. It was simulated with conditions of impulsive impact 

and harmonic excitation, and analyzed the results supplied by the State Observers through RMS differences between 

the two function curves. A complete observation system with a Global Observer of the process and Robust Observers, 

dedicated to accompany the stiffness variation of each element, was used, locating the fault and evaluating the 

percentage of penetration of the crack in the beam. 
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1. PURPOSE  
 
The purpose of this work is the study of a new mathematical model to discretize cracks at continuous mechanical 

systems, applying all the available properties at computational simulations using the methodology of State Observers to 
detect, localize and evaluate the crack conditions. 

 
2. THEORETICAL FUNDAMENTALS 

 
Basically a state observer estimates the state variables using as base the measurements of the output and control 

variables. This technique consists in a method capable of reconstruct the states of a system where the measurement is 
compromised or impossible, being able to detect faults at these points without the knowledge of its measurements 
(Melo, 1995). That can also be monitored with the reconstruction of its states. In 1966, Luenberger demonstrated in his 
work that if a system is linear, its state array can approximately be reconstructed trough the project of an observer and, 
in 1971, the same author introduces the concept of many types of observers, as example, the Identity Observer (Marano, 
2002) which uses a Linear Transformation of the data acquired from the output of the system to compare to the 
observers results. Despites the definition be relatively old, the proposed observers still being utilized, being theme of a 
great number of researches.  

In 1990 was established the stiffness matrix of the cracked element and also studied the motion equation of a 
cracked cantilever bean “Qian et al, (1990)”, using the equations provided by the fracture mechanic, turning possible 
modeling a cracked system. In 1995 was created a model of a beam using the Finite Element Method which can apply 
the Qian’s model of the crack, turning possible to study a new form to detect this kind of problem. This model 
simplifies the best model that can be achieved, that should consider the crack propagation and growth, the dynamical 
characteristics of the cracked element and the influence of the crack presence at the tension field near the element. 

Today the study of crack detection in mechanical systems lies over the developing of new observers and in the 
research and construction of crack models, making, then, more accurate the predictions that the simulations can bring.  
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2.1. State Obsevers 
 

Since 1964, the observers have been performing part of numerous projects of control systems, where a small part 
has been shown in an explicit way. The simplicity of its project and resolution make the state observer an attractive 
component of the project, because it can reconstruct the non measured states of the system. 

A state observer for an original dynamic system with the state {x(t)}, {y(t)}, as the output and the input being 
{u(t)}, is an auxiliary dynamic system. In other words, it is a copy of the original system that has the same input of this 
system and has the capability of estimate the unknown system states from states that are known. Figure 1 shows this 
definition, considering [L] as the State Observer Matrix. 

 

 
 

Figure 1. The State Observer definition 
 

The construction of an observer is just possible if the original system is able to be observed or at least detectable. 
Differing from the system )(tx& , that is physical, the system )(ˆ tx& is something abstract and generated by a computer 

program. There are a great number of kinds of state observers, but the identity observer had been chosen to the 
realization of the research, because it has good convergence and easy implementation.  
 

2.1.1. Identity Observer 
 
That is considered, for the description of the Identity Observe, the linear and time invariant system shown by 

equation (1): 
 

( ){ } [ ] ( ){ } [ ] ( ){ }tuBtxAtx +=&                     

                                                                                                                                                                                            (1) 

( ){ } [ ] ( ){ } [ ] ( ){ }tuDtxCty me +=                  

 
        Where [A] ∈ Rnxn, [B] ∈ Rnxp, [Cme] ∈ Rkxn, [D] ∈ Rkxp, n the order of the system, p the number of inputs {u(t)} 
and k the number of outputs {y(t)}.Taking the system as completely observable (Melo, 1995).  

          An observer for a system like this is: 
 

( ){ } [ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }( )tytyLtuBtxAtx −++=&                                                                                                (2)  

       
And       
 

( ){ } [ ] ( ){ }txCty me=                                                                                                                                                  (3) 

 
      Where, [L] is the state observer matrix. 
      The estimation error for the state is: 
 

( ){ } ( ){ } ( ){ }txtxte −=                                                                                                                                               (4) 

 
      And the estimation error at the output (residue): 
 

( ){ } ( ){ } ( ){ }tytyt −=ε                                                                                                                                            (5) 
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       Now, substituting the equations (1), (2) and (3) in (4) and (5), what is got is: 
 

 ( ){ } [ ] [ ][ ]( ) ( ){ } [ ][ ] ( ){ }tuDLteCLAte me +−=&                                                                                                      (6) 

 
      And 
 

 ( ){ } [ ] ( ){ } [ ] ( ){ }tuDteCt me −=ε                                                                                                                            (7) 

 

      Where, the expression ( ){ } ( ){ } dttedte /=&  represents the evolution of the error from the observer. 

 
2.1.2. Robust and Global Observers 

 
Two kinds of observers are used at the detection and localization of faults at dynamic systems. The global observer 

is the responsible for detect a possible fault at the system, while the robust observer is capable of locating the parameter 
that failed (Marano, 2002).    

The global observer is nothing more than a copy of the original system. So, is possible to make a comparison of the 
collected parameters with the ones that have constructed by the global observer. If any difference appears between the 
behaviors of the curves can be concluded that the real system is failing.  

From this information, the new focus is the search of the faulty parameter, constructing robust observers for every 
parameter that is able to fail. These observers are constructed with a gradual alteration on its dynamic matrix at the 
respective parameters for which they are robust. If the behavior of the robust observer of a determinate parameter gets 
close of the real behavior of the system, then that can be concluded that this parameter is failing (Marano, 2002). 

This methodology can be employed for any mechanical system that is intended to control. The main idea is to 
construct a monitoring bank of robust observers to each parameter of the system, because they can constantly send the 
RMS differences between the obtained signals and the graphic generated by the observer, to a logic decision unit, that 
will judge if there is a fault at a parameter (Lemos, 2004). 

The figure below represents the functioning of a logic decision unit based on the information given by the observers. 
 

 
 

Figure 2. Principle of a system monitoring with Robust Observers   
 
2.2. Cracked Beams   

 
Knowing the risks that one crack can produces inside a mechanical system, its occurrence and identification is 

indispensable for the structure health analysis. The crack position and its dimensions can be detected by the disturbance 
of the natural frequency and mode shapes of the system. When a beam is dynamically loaded, and it has a crack inside, 
this crack will open and close alternately, depending on the vibration direction, causing a variation of the physical 
parameters of the system, as an example, a stiffness variance. 

The presence of a crack at a beam, according to Saint- Venant’s Principle, causes a neighborhood perturbation at the 
tension distribution. This perturbation is especially relevant when the crack is opened and determines a local reduction 
of the stiffness, so if the crack is closed, can be considered that there is no disturbances at the system.     

When this kind of system is discretized by Finite Elements, it is necessary to take an essential care with the 
construction of its mass, stiffness and dumping matrices.  

Making the assumption that with a crack there is no mass losses, can be concluded that the mass matrices won’t 
suffer any effect of the crack, because even the cracked element still have its  mass matrix [M] unaltered: 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 



















−−

−

−

−

=

22

22

435413

221561354

313422

135422156

420
][

lll

ll

llll

ll

mL
M                                                                                                            (8) 

 
Where m is the element mass and L is the total length of the beam. 
The dumping matrix is very hard to be obtained with theoretical procedures, so it is considered structural and 

obtained with the assumption that the beam is a single degree system. So, using some beam parameters could be found 
the logarithm decrement (ξ) of the beam displacement behavior, and using the natural frequency of the system an 
equation for the equivalent dumping can be found: 

 

.ξ.m.f4C neq π=                                                                                                                                                        (9) 

 
Where Ceq is the equivalent dump, m is the beam mass and fn is the natural frequency of the beam. 
Placing the result at a 4x4 identity matrix can be obtained the dumping matrix for the element: 
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2.2.1. Stiffness Matrix of a Cracked Element  

 
The biggest problem to determine how a cracked system can be described is the stiffness matrix. All the 

approximations that can be done come from a complex theory developed to be used at numerical methods. According to 
Saint- Venant’s Principle, the tension field is only affected at the adjacent region of the crack. So, the stiffness matrices 
of the elements, with the exception of the cracked element, can be considered unaltered under a certain limitation of the 
element size and it fits in the theory of Euler Bernoulli with hermitian function: 
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Where E is the beam material elasticity modulus, b is the width and h is the beam hight. 
Because of the discontinuity of the deformation at the cracked element, it’s very hard to find an appropriated 

function to express, approximately, the potential elastic energy. The calculus of the additional tension energy has been 
deeply studied through the fracture mechanics.     

Then, the expression of the cracked element matrix (kcrack) is an explicit function of a lot of parameters, such as 
flexibility coefficients and cracks dimensions. However, the matrix can be writing as a relation of evaluation 
coefficients, where the coefficient for the condition for open crack (α) is tabled. This coefficient is a function of the 
crack depth and the relation between height and length of the cracked element. It has direct influence at the stiffness 
matrix of the cracked element:   
 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 



















=

344234424214

234233223213

424223322212

214213212211

1Crack

αkαkαkαk

αkαkαkαk

αkαkαkαk

αkαkαkαk

αk                                                                                                    (12) 

 
Still, for each robust observer designed, there is a change in matrix stiffness in the position of the broken part, and 

reduced their values according to the proportional constant. Therefore, each new dynamic matrix built, Eq. (13), should 
be recalculated the quadrant related to the stiffness matrix of the same (in Quadrant 3). 
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Where [A] is the Dynamic Matrix, [0] is a Zero Matrix, [I] is an Identity Matrix, [M] is the Mass Matrix, [C] is the 

Dumping Matrix and [K] is the Stiffness Matrix. 
 

2.2.2. Motion Equation of a Cracked Element  
 
The dynamic response of the beam in the intervals of time that the crack is closed can be considered, for simplicity, 

such as a beam without crack. This is because the crack interfaces interact with each other completely. Under the action 
of the force of excitement, the opening and closing of the crack will alternate against time. 

The equation of motion of the cracked beam discretized by N finite elements and subjected to a vector of external 
excitation f(t) can be written as Eq. (14), where M is the mass matrix, C is the matrix of damping, (Ku -- γ∆K) is the 
matrix of stiffness and ∆K = Ku – Kc. As definition γ = 1 when the crack is open and γ = 0 when the crack is closed.  

 

)()()()()( tftuKKtuCtuM u =∆−++ γ&&&                                                                                                       (14) 

  
Was considered γ = 1, because as long as the crack remains closed (γ = 0) the stiffness matrix is composed only by 

the portions where the crack is not considered, so at that moment there is no failure. 
 

3. METHODOLOGY 
 

For the suggested system, a coupled cantilever beam, were used a Finite Element Method with beam elements at an 
elastic foundation “Choy et al, (1995)” obeying the Crack model described before. The beam is discretized in five 
elements and at one of them placed the crack. The cracked element was modeled with the open crack parameters during 
all the simulation because were found difficulties to implement the dynamic crack. 

 

 
 

Figure 3. Cracked Beam scheme with the Crack placed at the second element 
 

For this system were simulated conditions of impulsive impact and harmonic excitation, and analyzed the results 
supplied by the State Observers through RMS differences between the two function curves A complete observation 
system with a Global Observer of the process and Robust Observers, dedicated to accompany the stiffness variation of 
each element, was used, locating the fault and evaluating the percentage of penetration of the crack in the beam. 

The simulations were computationally developed at MATLAB® software in two steps: First was constructed a 
stiffness matrix creation algorithm through the study of the beam parameters, and after, with these results, was 
developed a routine that has the detecting, finding and evaluating faults as function, with graphical plotting and 
numerical analysis.    
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4. RESULTS 

 
The results were obtained considering previously that the crack position is already known and the study object is 

only the evaluation of the crack condition. However the fault localization isn’t too much different, because the same 
process is done, but now, using all percentage of penetration for all the stiffness parameters of each element. In this case 
the global observer detected the fault and the robust observers are placed just at one element, the cracked one.  

For this simulation a mild steel cantilever beam was considered having the dimensions of length L=0.6m, height 
h=12.5x10-3m, width b=17.2x x10-3m, Elasticity modulus E=2.07x10¹¹N/m, density ρ=7850 kg/m³ and Element length 
of l=0.12m, being the initial condition for all the simulations a null displacement for all the elements. The time interval 
chosen was from 0 to 0.4 seconds for impulsive excitation and harmonic excitation, being both of them shared into 1024 
points to plot. 

Considering that each element has its own stiffness matrix Eq. (11), mass matrix Eq. (8) and dumping matrix Eq. 
(10), it`s necessary respect the coupling effects and the crack alterations at them. So the matrices are changed from its 
usual configuration. 

As said before, the only alteration did to adjust the model to be more close to the real situation is the stiffness matrix 
for the system alteration, because there is no mass significant loss and the dumping is calculated from the Structural 
Dumping. The alteration is done by proportional parameters that depend on the nature of the crack, being searched and 
included at Robust Observers. 

For the realized computational simulations could be verified the detection and localization of the fault comparing the 
global system without fault and the global observer for the system calibration. The RMS difference of 10E-13 shows a 
curve coincidence (This value has been taken as a pattern through all the simulations). It means that, if the real system 
stay practically equal to the global observer (with no fault), there is no fault at the system.    

Once the faults are put into the system, they are detected by a divergence between the curves already mentioned, 
and, trough the action of the robust observers they are found and evaluated. Exemplifying, on the second line and 
second column of the Tab. 1, can be verified a detection of 5% of fault, so, the crack reach 5% of the total height of the 
element. At the sequence, were inserted faults varying from 5% to 5% until reaching 20% of height of the element, 
accompanied by the robust observers which identified them. The simulations were done by an impact force, described 
by a unitary impulse function (or not null initial velocity), and by an harmonic force, of periodic actuation and described 
by a function F(t)=A.seno(φ + ω(t)), with amplitude of 10N and a frequency of 100Hz. 
 

Table 1. Result of the RMS differences for an Impact Force Simulation 
 

 Without Fault 5% of Fault 10% of Fault 15% of Fault 20% of Fault 
     Global Obsv. 9.0647e-12 1.6981e-03 1.5585e-02 5.4116e-02 9.2969e-02 

  Obsv. 5% 2.0342e-03 1.1934e-11 1.5669e-02 5.3738e-02 9.3116e-02 
   Obsv. 10% 6.1713e-03 9.2233e-03 1.0736e-11 3.4128e-02 7.5412e-02 
   Obsv. 15% 2.5082e-02 2.7802e-02 2.0286e-02 8.8463e-13 3.7926e-02 
   Obsv. 20% 5.1826e-02 5.4075e-02 4.3481e-02 2.3017e-02 7.6434e-12 

 
Table 2. Result of the RMS differences for an Harmonic Force Simulation 

 
 Without Fault 5% of Fault 10% of Fault 15% of Fault 20% of Fault 
Global Obsv. 1.2029e-13 2.9342 e-02 8.7346e-03 4.6538e-03 2.3652e-03 
Obsv. 5% 2.6341e-02 3.7426e-12 9.6035e-02 7.6985e-02 9.3336e-02 
Obsv. 10% 3.8246e-02 3.1402e-03 9.7826e-12 5.1245e-03 8.3652e-03 
Obsv. 15% 9.7542e-03 4.4948e-03 1.9896 e-03 1.2645e-11 1.3652e-03 
Obsv. 20% 3.0129 e-02 5.9874 e-02 5.1765e-03 2.4578e-02 4.6548 e-11 

 
As observed, there was a coincidence between the curves of the simulated system and the State Observers, projected 

to detect the respective size percentage of the crack, represented by the hatched elements, because the RMS difference 
values between the curves tends to zero, what show the efficiency of the State Observers bank that was used.            

The graphical solution of the problem clarifies more didactically how the functioning of the State Observers is. At 
the figures below, can be observed a System excited harmonically with a crack size of 30% of the beam height.  
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Figure 4. Global Observer overlaps the Simulated System without fault at the Simulation. 
 

 
 

Figure 5. Disagreement between Global Observer and the Simulated System, with crack size of 30% of height.  
 

 
 

Figure 6. Disagreement between Robust Observer, to crack size of 15%, and the Simulated System, with crack size 
of 30% of height. 
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Figure 7. Overlapping of Robust Observer, to crack size of 30%, and the Simulated System, with crack size of 30% 
of height. 

 
First the simulated system was compared to the global observer. The system wasn’t working in perfect conditions, 

then there was detected a divergence between the Observer and the Simulated System curves. Knowing about a 
irregularity of the system, the Robust Observers keep on looking after the faulty parameter, being then, founded by a 
superposition of the function curves. 

In both simulations, the kinematical magnitude used to do the analysis was the velocity.  It is common to use this 
variable of the process because the measurement equipment is an accelerometer which gives, as result of the 
measurement, the acceleration of the vibration and with the numerical derivation of the curve, given by the own 
equipment,  there is velocity as response. 

As seen, the values of the RMS difference between the measured system and the State Observer, at the faulty 
parameters, doesn’t show a great difference if compared to the cases that there isn’t fault. The problem created with this 
misfortune is that, at some cases, the Observers may not detect the fault correctly because the RMS difference may not 
be as bigger as the value calculated to be, as understood from the system, the Logic Decision Unit may not trigger the 
Alarm System. It will probably happen to more complex systems, with more excitations forces or systems that require a 
finest mesh.  

 
5. CONCLUSIONS 

 
Trough this work there was noticed that in the study realized to faulty continuous system, the localization of the 

faults is obtained with a large number of structural variables measurements. The state observer technique uses fewer 
measurements with the reconstruction of the other states, what leads to cost and time reduction. 

The computational analysis for the developed method have shown good results for the simulated system with a 
crack, what shows that the mathematic used to model the system have generated results that are applicable at real 
systems. There could be observed also, that only the robust state observer designated to a specific crack percentage can 
detect the irregularity presented, showing that the method not only detect and localizes the fault, but also can avail the 
problem magnitude. 

In the future, the experimental analysis will show if the magnitude of the differences offers a difficulty to implement 
the method to real structures with measurements provided from an accelerometer, that will be included at the Finite 
Element model as part of the structure, coupled to the own structure.  
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