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Abstract −This work provides an estimation procedure to determine the J-integral for pipes with circumferential sur-
face cracks subjected to bending load for a wide range of crack geometries and material (hardening) based upon
fully-plastic solutions. A summary of the methodology upon which J is derived sets the necessary framework to deter-
mine nondimensional functions h1 applicable to a wide range of crack geometries and material properties character-
istic of structural, pressure vessel and pipeline steels. The extensive nonlinear, 3-D numerical analyses provide a defi-
nite full set of solutions for J which enters directly into fitness-for-service (FFS) analyses and defect assessment pro-
cedures of cracked pipes and cylinders subjected to bending load.
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1. INTRODUCTION

Defect assessment procedures of cracked pipes and cylinders under varying loading conditions rely heavily on the accu-
rate evaluation of crack driving forces, such as the (Mode I) linear elastic stress intensity factor, KI, and the elastic-plastic
J-integral (or, equivalently, the crack tip opening displacement, CTOD or δ ). These measures of crack-tip loading provide
a means to correlate the severity of crack-like defects to the operating conditions in terms of the simple axiom that fracture
occurs when the applied crack driving force reaches a critical value as given by KIc , Jc or δc [1-3]. Previous research
efforts have provided an extensive body of KI solutions for a variety of crack configurations, including circumferentially
cracked cylinders, which are readily available through several compendia [4-8]. In contrast, a full set of J and CTOD solu-
tions for varying crack geometries and loading modes directly connected to the description of fracture behavior under
large scale yielding conditions is still lacking.

Current evaluation procedures for J focus primarily on developing estimation schemes for its plastic component, de-
noted Jp. These methodologies have evolved essentially along three lines of development: (1) estimation procedures relat-
ing the plastic contribution to the strain energy and J; (2) fully plastic descriptions of J based upon HRR-controlled crack-
tip fields and limit load solutions and (3) approximate descriptions of J derived from the concept of a reference stress
coupled with stress intensity factor solutions. The first approach employs a plastic η -factor introduced by Sumpter and
Turner [9] to relate the macroscale crack driving force (J and CTOD) to the area under the load versus load line displace-
ment (or crack mouth opening displacement) for cracked configurations (see also refs. [10,11]). Because of its relative
ease with which the load-displacement records can be measured in conventional test specimens, the method is most suited
for testing protocols tomeasure fracture toughness such as ASTME1820 [12]. The second approach derives from previous
work of Kumar et al. [13] building upon early investigation of Shih and Hutchinson [14] to introduce an estimation proce-
dure for Jp applicable to elastic-plastic materials following a power hardening law such as the Ramberg-Osgood model
[2,7,15]. Here, Jp is expressed in the general form Jp ∝ h1 (a∕W , L , n) (P∕P0 )n+1 where a is the crack size,W denotes
the component width, L represents a characteristic length for the cracked component, n is the Ramberg-Osgood strain
hardening exponent, P defines a generalized load and P0 is the corresponding (plastic) limit load. Factor h1 represents
a nondimensional parameter dependent upon crack size, component geometry and strain hardening properties which sim-
ply scales Jp with (P∕P0 )n+1. The method became widely known as the EPRI methodology and has later been expanded



Proceedings of COBEM 2009
Copyright @ 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

by Zahoor [16] to include additional geometries such as circumferentially and axially cracked pipes under tensile and
bending loads. However, these J solutions for circumferentially cracked pipes subjected to bending remain limited to very
few crack geometries and strain hardening properties. The third approach, most often referred to as the reference stress
approach, is essentially a modification of the EPRI methodology proposed by Ainsworth [17] to reflect more closely the
flow behavior of actual materials, particularly high hardening materials such as austenitic stainless steels. Moreover, this
approach enables evaluation of Jp from simply using available stress intensity factor solutions for the cracked component
in connection with the adoption of parameter h1 defined for a linear material in which n=1.

While all these procedures share much in common, each method has certain relative advantages and disadvantages
in fracture mechanics applications. In particular, both the fully plastic (EPRI) and the reference stress methods prove suffi-
ciently applicable for a broad range of crack geometries and loading modes. Further, they provide essentially similar esti-
mates of crack driving forces for low to moderate deformation levels, as measured by J (CTOD), when the material’s
stress-strain behavior is adequately described by a power hardening law such as the Ramberg-Osgood model. However,
this picture becomes potentially more complex as the evolving plasticity progresses from contained to fully yielded condi-
tions, particularly for moderate to low hardening materials. Because parameter h1 depends rather strongly on the strain
hardening exponent (this issue is addressed later in Section 4), adopting h1 for a linear material with n=1 in Ainsworth’s
model can lead to unacceptably large errors in J estimations, especially for moderate to large n-values. While previous
exploratory analyses by Anderson [2] have shown that both approaches provide similar predictions of critical crack sizes
in center cracked panels, extension of these methodologies in accurate descriptions of crack-tip driving forces (as mea-
sured by J and CTOD) for circumferentially cracked pipes under conditions of varying cracking geometries, material
properties and loading modes remains untested. These observations clearly underlie the need of reliable and yet simple
evaluation procedures for crack-tip driving forces in advanced defect assessment methodologies applicable to elastic-
plastic and fully plastic conditions.

The extension of fully plastic solutions for the J-integral in pipes with circumferential surface cracks subjected to
bending load for a wide range of crack geometries and strain hardening properties is the focus of this paper. The present
investigation broadens the applicability of current evaluation procedures for Jwhich enter directly into structural integri-
ty analyses and flaw tolerance criteria. The presentation begins with a summary of the fully-plastic solution upon which
J is derived which forms the basis of the adopted framework to determine the elastic-plastic crack-tip driving forces for
the analyzed cracked configurations. This is followed by the description of extensive 3-D nonlinear analyses of circumfer-
entially cracked pipe with surface flaws having different crack depth (a) over pipe wall thickness (t) ratios and varying
crack length for different strain hardening properties. The 3-D results cover a large set of dimensionless functions relating
the elastic-plastic crack-tip driving forces with the applied (remote) bending moment applicable to FFS procedures of
a wide range of thin-walled cylindrical components.

2. FULLY PLASTIC SOLUTIONS FOR THE J-INTEGRAL IN CIRCUMFERENTIALLY CRACKED PIPES

The procedure to estimate the J Integral for a cracked component such as a circumferentially cracked pipe begins by con-
sidering the elastic and plastic contributions to the strain energy under Mode I deformation in the form [2]

J = Je+ Jp (1)

where the elastic component, Je , is given by

Je =
K2
I

E′ . (2)

Here, KI is where the elastic stress intensity factor and E′=E or E′=E∕(1−ν2) whether plane stress or plane strain condi-
tions are assumed with E representing the (longitudinal) elastic modulus and ν is the Poisson’s ratio.

The plastic component, Jp, can be conveniently evaluated from the fully plastic solution for a strain hardening materi-
al introduced by Shih and Hutchinson [14] and further validated by Kumar et al. [13]. For an elastic−plasticmaterial obey-
ing a Ramberg-Osgood model [2,7,15] to describe the uniaxial true stress (σ ) vs. logarithmic strain (Á ) response given
by

Á
Áys=

σ
σys
+ α σσys

n

(3)



Proceedings of COBEM 2009
Copyright @ 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

where α is a dimensionless constant, n defines the strain hardening exponent, and σys and Áys=σys∕E define the yield stress
and strain , the fully plastic Jp is expressed as

Jp= αÁysσysbh1 a∕W,L, n PP0

n+1 (4)

where a is the crack size,W denotes the cracked component width, b=W−a defines the uncracked ligament, L represents
a characteristic length for the cracked component, P is a generalized load and P0 is the corresponding (generalized) limit
load. In the above expression, h1 is a dimensionless factor dependent upon crack size, component geometry and strain
hardening properties. The previous solution forJp is essentially applicable for fully plastic cracked configurations in which
the elastic strains are vanishingly small, particularly within the annular region surrounding the crack tip where the condi-
tion J ∝ P n+1 holds true [18].

To introduce an estimation procedure for J in a cylinder or pipe having a circumferential surface crack based upon
the previous fully-plastic solution, consider the crack configuration subjected to bend loading illustrated in Fig. 1. The
above methodology can be extended in straightforward manner to define Jp for this crack geometry by the following ex-
pression

Jp= αÁysσysbh1 a∕t,De∕t, θ, n MM0
n+1 (5)

where De is the pipe (cylinder) outer diameter, t is the wall thickness, M denotes the applied bending moment and M0

defines the limit bending moment. Here, the uncracked ligament is now given by b=t−a and the surface crack length
is described by the angle θ (see Fig. 1) as [7,16]

θ =
πc
2De

(6)

where c is the circumferential crack half-length.
In the above expressions, the limit bending moment, M0, is conventionally given by [7,16]

M0 = 2σysR2
mt2 sin β− a

t sin θ
 (7)

inwhich Rm denotes themean radius (Rm=(Re+ Ri )∕2 where Re and Ri are the external and internal radius) and param-
eter β is defined as

β = π
2
1− θπat . (8)

The limit solution for the bending moment given by Eq. (7) is applicable in the range (θ+ β ) ≤ π [16,7].
Finally, the elastic terms Je , is calculated by using Eqs. (2) coupled with a convenient form for the elastic stress inten-

sity factor, KI. For a circumferential surface crack in a pipe subjected to a bending moment, an improved expression for
parameter KI is given by [7]

KI= σbG5
πa
Qs
 (9)

where σb is the (global or net-section) bending stress about the X-axis (see Fig. 1) expressed as

σb =
4MRe

π R4
e− R4

i
 (10)

and the flaw shape parameter, Qs, is defined as

Qs = 1+ 1.464 ac 
1.65

, a ≤ c . (11)
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Figure 1 Pipe configuration and defect geometry adopted in the numerical analyses.

In the above expression (9), G5 is the influence coefficient corresponding to a circumferential semi-elliptical surface
crack in a cylinder subjected to a (pure) net-section bending as given in Appendix C of API 579 [7].

Evaluation of parameters J based upon the procedure outlined above requires specification of factors h1 once all other
quantities entering directly into the calculation of Je and Jp are defined. Current available solutions (such as the EPRI
methodology [13,18]) provide values for factor h1 which are only applicable to few selected crack geometries, including
circumferentially cracked pipes under axial load. The relatively limited analyses and data available to evaluate J for a
broad range of crack geometries and material properties underscore the need for improved and accurate descriptions of
factors h1 for circumferential surface cracks in pipes under bending. Section 4 explores detailed numerical and validation
analyses which lead to a comprehensive body of fully-plastic solutions for the J-integral.

3. Computational Procedures and Finite Element Models

3.1 Numerical Models of Circumferentially Cracked Pipes

Nonlinear 3-D finite element analyses are conducted on circumferentially cracked pipes with external surface flaws sub-
jected to bending. The analyzed pipe models have wall thickness t= 20.6 mm with different outside diameters De=206
mm (De∕t=10), De=309 mm (De∕t=15) and De=412 mm (De∕t=20). These geometries typify current trends in high
pressure, high strength pipelines, including submarine pipelines and risers. The analysis matrix considers surface flaws
with varying crack depth (a) and crack length (2c) as defined by a∕t=0.1 to 0.5 with increments of 0.05 and θ∕π=0.04,
0.08, 0.12, 0.16 and 0.20 (1.7≤c∕a≤82.5 − see Eq. (6)). Figure 1 shows the pipe configuration and defect geometry
adopted in the analyses. Overall, the computations comprised 135 numerical models and 405 loading cases considering
the three hardening levels adopted in the analyses (refer to Section 3.2 next).

Figure 2(a-b) shows the finite element model constructed for the pipe with De∕t=10, a∕t=0.5 and θ∕π=0.12. A
conventional mesh configuration having a focused ring of elements surrounding the crack front is used with a small key-
hole geometry (blunt tip) at the crack tip to enhance numerical convergence and to accommodate the large plastic strains
that develop with increased levels of deformation. The small initial root radius at the crack tip is ρ0=5μm (0.005 mm).
A typical half-symmetric model for the cracked pipes has approximately 15000 elements and 18000 nodes with appropri-
ate constraints imposed on nodes defining the symmetry planes. The crack front is described by 15 (circumferential) layers
defined over the crack half-length (c); the thickest layer is defined at the deepest point of the crack with thinner layers
defined near the free surface to accommodate the strong gradient in the stress distribution along the crack front. The finite
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element models for the pipe specimens are loaded by a four-point bending scheme so that a constant bending moment
with zero shear forces is imposed on the crack plane and along the pipe length at distances about three times the pipe
diameter. Very similar finite element models and mesh details are employed for other cracked pipe configurations.

(a) (b)

X

Y

Z

Figure 2 (a) 3-D finite element model employed for the pipe specimen with De ⁄t=10, a⁄t=0.5 and θ⁄π=0.12;
(b) Near-tip model and meshing details.

3.2 Material Models and Computational Procedures

The elastic-plastic constitutive model employed in all analyses reported here follows a J2 flow theory with conventional
Mises plasticity in small geometry change (SGC) setting. The numerical solutions employ a simple power-hardening
model to characterize the uniaxial true stress (σ ) vs. logarithmic strain (Á ) in the form

Á
Áys=

σ
σys

Á≤ Áys ; Á
Áys= α σσys

n

Á> Áys (12)

where σys and Áys are the (yield) stress and strain, α is a dimensionless constant and n is the strain hardening exponent.
The finite element analyses consider material flow properties covering typical structural, pressure vessel and pipeline
grade steels with E=206 GPa, ν=0.3 and α=1: n=5 and E∕σys=800 (high hardening material), n=10 and E∕σys=500
(moderate hardening material), n=20 and E∕σys=300 (low hardening material). These ranges of properties also reflect
the upward trend in yield stress with the increase in strain hardening exponent, n, characteristic of ferritic structural steels,
including pipeline steels.

3.3 Computational Procedures

The finite element code WARP3D [19] provides the numerical solutions for the 3-D analyses reported here. The code
incorporates a Mises (J2) constitutive model in both small-strain and finite-strain framework and solves the equilibrium
equations at each iteration using a very efficient, sparse matrix solver highly tuned for Unix and PC based architectures.
Use of the so-called B formulation [20] precludes mesh lock-ups that arise as the deformation progresses into fully plastic,
incompressible modes. The sparse solver significantly reduces both memory and CPU time required for solution of the
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linearized equations compared to conventional direct solvers. A domain integral procedure [21] is utilized to compute
the numerical values of J needed to determine the dimensionless function h1. These J-values are in excellent agreement
with estimation schemes based upon eta-factors for deformation plasticity [12] in common fracture specimens while, at
the same time, retaining strong path independence for domains defined outside the highly strained material near the crack
tip.

4. FACTORS h1 FOR CIRCUMFERENTIAL SURFACE CRACKS IN PIPES UNDER BENDING

Evaluation of factor h1 for the analyzed crack configurations follows from solving Eqs. (5) upon computation of the plastic
component of the J integral, Jp, with the applied bending moment, M, for a given crack size, component geometry and
strain hardening exponent, n. To develop a more consistent scheme to determine the dimensionless function h1, it proves
convenient to rewrite Eq. (5) into the form

Jp=
Jp

αÁysσysb
= h1 a∕t,De∕t, θ, n MM0

n+1 (13)

so that factor h1 can be obtained by simply determining the slope of a least square fit to the (linear) evolution of Jp with
M∕M0

 n+1 .
Figures 3-5 provide the h1-factors for the circumferentially cracked pipes with varying geometries and material prop-

erties derived from the J estimation procedure previously outlined. For all sets of analyses, the results reveal that factor
h1 displays a rather strong sensitivity to crack geometry and strain hardening behavior. To facilitate interpretation of these
results, direct first attention to a fixed De∕t-ratio such as the plots for De∕t=10 displayed in Fig. 3. For shallow crack
sizes ( a∕t<0.2~0.3), the h1-values are fairly insensitive to crack length (defined by parameter θ∕π) for all hardening
levels; here, the evolution of factor h1 with crack depth essentially falls onto a single curve particularly for a∕t<0.2. In
contrast, the h1-factors for deeply cracked pipes (a∕t>0.4 ) depend rather strongly on θ∕π for all hardening levels, partic-
ularly for shorter crack lengths (θ∕π≤0.12). Very similar trends are displayed by other De∕t-ratios − see Figs. 4 and 5.

Further, we note that the evolution of factor h1 with θ∕π for a fixed a∕t-ratio displays a somewhat mixed behavior
as it increases and then slightly decreases with increased θ∕π-values. Such development is particularly prominent in the
deep crack range (a∕t>0.4) for all hardening levels. Consider, for example, the h1-values for n=10 and a∕t=0.5 dis-
played in Fig. 3(b); here, factor h1 changes rapidly from θ∕π=0.04 to θ∕π=0.08 and then exhibits a slight drop from
the peak level attained at θ∕π=0.12 with increased crack length. We argue that these trends in variation of factor h1 are
associated with the synergistic combination of crack depth (which defines the crack ligament size) and circumferential
crack length. Such synergism potentially impacts the evolution of the highly-strained plastic zones along the crack liga-
ment with increased crack-tip loading thereby affecting the proportional relationship between Jp and. M∕M0

 n+1 upon
which h1 is defined.

The results for the h1-values corresponding to the low hardening material (n=20) shown in the plots of Figs. 3-5 also
deserve attention. As we have previously discussed, factor h1 is evaluated using a range of J-values in which they follow
a proportional relationship with the applied bending moment,M. While this condition is met for the full range of a∕t-val-
ues and θ∕π=0.04, 0.08 for all De∕t-ratios, the h1 evaluation procedure for some combinations of crack depth (a∕t) and
crack length (θ∕π) for the n=20 material fails to provide sufficiently accurate values. For a∕t-ratios up through~0.25,
however, a full set of h1-factors for the low hardening material and varying De∕t-ratios is readily defined.

5. SUMMARY AND CONCLUSIONS

This work provides an estimation procedure to determine the J-integral for pipes with circumferential surface cracks sub-
jected to bending load for a wide range of crack geometries and material properties based upon fully plastic solutions.
In the present study, attention is directed to a circumferentially cracked pipe with surface flaws having different crack
depth (a) over pipe wall thickness (t) ratios and varying crack length for different strain hardening properties and outside
diameters (De∕t). The methodology derives from a fully plastic description of the J-integral incorporating limit load solu-
tions for the cracked component to determine nondimensional functions h1 applicable to a wide range of crack geometries
and material properties characteristic of structural, pressure vessel and pipeline steels.

The extensive set of nonlinear, 3-D finite element analyses conducted in this study provides a definite full set of solu-
tions for Jwhich enters directly into fitness-for-service (FFS) analyses and defect assessment procedures of cracked pipes
and cylinders subjected to bending load. The associated dimensionless h-values are derived from a least square fitting
to the linear evolution of normalized Jp with M∕M0

 n+1 for quantities which follow a proportional dependence of Jp
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Figure 3 Variation of factor h1 with increased a⁄t-ratio for the pipe specimen with De ⁄t=10.
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Figure 4 Variation of factor h1 with increased a⁄t-ratio for the pipe specimen with De ⁄t=15.
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Figure 5 Variation of factor h1 with increased a⁄t-ratio for the pipe specimen with De ⁄t=20.
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on the applied loading (M). Ongoing work with the fully plastic solution framework also focuses on deriving h-values
for circumferentially cracked pipes under combined bending, tension and internal pressure as well as for overmatched
girth welds.
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