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Abstract: The present paper is concerned with the modeling of superplasticity phenomenon in metallic materials using 
a continuum damage theory. The goal is to propose a one-dimensional phenomenological damage model, as simple as 
possible, able to perform a mathematically correct and physically realistic description of plastic deformations, strain 
hardening, strain softening, strain rate sensitivity and damage (nucleation and growth of voids) observed in tensile tests 
performed at different strain rates. Only two tensile tests at different controlled strain rates are necessary to obtain all 
the material parameters that appear in the theory.  Examples concerning the modeling of tensile tests of a magnesium 
alloy at different strain rates are presented and analyzed. The results obtained show a very good agreement between 
experimental results and model prevision. 
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1. Introduction 
 

A wide class of materials - metals, ceramics, intermetalics, nanocrystaline, etc -  show  superplastic behavior under 
special processing conditions. Although, up to now, there is no precise physical definition of superplasticity 
phenomenon in metallic materials, from a phenomenological point of view, superplasticity can be defined as very high 
deformations prior to local failure.  In the case of tensile tests under controlled strain rate, this means very high 
elongations of the specimens before rupture. The deformation process is generally conducted at high temperature and 
the strain can be 10 times the obtained under room temperature. Superplastically deformed material in tensile tests gets 
thinner in a very uniform manner, rather than forming a 'neck' (a local narrowing) which leads to fracture.  The most 
important characteristic of a superplastic material is its high strain rate sensitivity of flow stress that confers a high 
resistance to neck development and results in the high tensile elongations characteristic of superplastic behavior. 
Superplasticity is used to form directly complex objects, by the application of gas pressure or with a tool, and often with 
the help of dies, avoiding complicated and costly joining and machine steps. The applications of superplastic formations 
were originally limited to the aerospace industry, but it has recently been expanded to include the automobile industries 
as a result of breakthroughs in the range of materials that can be made superplastic.  

The present paper is concerned with the modeling of such phenomenological behavior using a continuum damage 
theory. It is not the goal here to discuss the microscopic mechanisms of superplastic deformation. Most of the studies 
presented up to now in the literature are concerned with micro-structural aspects of the phenomenon. In the case of 
superplasticity, the damage is mainly due to nucleation and growth of voids in the material. An interesting analysis of 
cavity initiation and growth can be found in Khaleel et al, 2001. Other experimental works about superplastic behavior 
in magnesium alloys can be found in Kim et al 2001;  Xin Wu and  Yi Liu., 2002; Tan, 2002 ;  Somekawa et al, 2003; 
Lin et al, 2005; Takuda et al, 2005; Yin, 2005a,b ;  Lee, et al, 2005.  

In this work, the material parameters that appear in the proposed constitutive equations are identified for magnesium 
alloy AZ31 and the model previsions are compared with experimental test performed at different strain rates. 
Magnesium  alloys have recently attracted significant interest due to their excellent specific properties that make them 
potentially suitable candidates for replacing heavier materials in some automobile parts. Superplastic forming of Mg 
alloys is an alternative way of shaping these materials into complex geometries in one single operation. Thus, 
significant efforts are being lately devoted to understanding the underlying physical processes that take place during 
superplastic deformation of Mg alloys in order to improve their formability. The experimental results considered on this 
paper are taken from Del Valle et al. (2005).       
 
2. Basic definitions 

 
Let’s consider a simple tension test in which the specimen has a gauge length L  and cross section oA  submitted to 

a prescribed elongation L(t)Δ . The force applied on the specimen is noted F(t) . The so-called engineering strain  ε  
and the engineering stress σ  are defined as  
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     o(t) L(t) / L   ;   (t) F(t) / Aε Δ σ= =                                                                                                         (1) 
 

The so-called true strain tε  and true stress tσ  are defined as 
 

     t tln(1+ )   ;   (1 )ε ε σ σ ε= = +                                                                                                                     (2) 
 

From definitions (1) and (2) it is possible to obtain the following relations 
      
     t t t tln(1+ )  exp( )    ;   /(1 )ε ε ε ε ε ε ε ε= ⇒ = = +                                                                           (3) 
 

The ASTM Standard E 2448 – 05 “Standard Test Method for Determining the Superplastic Properties of Metallic 
Sheet  Materials” describes the procedure for determining the superplastic forming properties (SPF) of a metallic sheet 
material. It includes tests both for the basic SPF properties and also for derived SPF properties. The test for basic 
properties encompasses effects due to strain hardening or softening. 
 
3.  Modeling the true stress against true strain curve without damage 
 
The main idea of the model is to propose a very simple expression for the true stress tσ vs  true strain tε  curve :  
 
     HIP 1: [ ]t ta 1 exp( b )  σ ε= − − , with a  and  b  being positive functions of  tε  and tε                                (4) 
 
The dependency of the parameters  a , b  on tε  and tε  is the key to the definition of a physically realistic model. From 
experimental observations (see next section), it is possible to propose the following expression: 
 

     t ta( , ) ε ε is such that  ( ) ( ) [ ] aa o a Ka-N a -N
t te e exp( )ε ε⎡ ⎤− =⎣ ⎦                                                                             (5)                        

 
with  oa , aK , aN , being temperature dependent positive parameters.  Since t texp( )ε ε ε= , a  is constant in 

tensile tests with fixed value of the engineering strain rate ε . Furthermore, it is easy to verify that oa a=  when  
0ε = .  If  we define ( )oa aa ln e -e= ,  then,    from (5) it is possible to obtain the following relations: 

 

     ( )oa aa ln e e= + a a      and        a K ln( ) Nε= +                                                                                (6) 
 
To simplify the model, it will be assumed from now on that oa 0= , hence from (6): 
 

( )a
t t a aa( , ) ln e 1        with       a K ln( ) Nε ε ε= + = +                                                                          (7) 

 
Figure 1: Variation of coefficient a  with 0a 0=  and 0a 0≠  for a magnesium alloy AZ31 at 375 °C  

    
  The relation between coefficienta and the engineering strain rate ε  is plotted in Fig. 1 for the two different cases 

oa 0=  and oa 0≠ . It is evident that the obtained results differ only for lower strain rates. 
      Also from experimental observations, it is possible to propose: 
 

     t tb( , ) ε ε is such that  ( ) ( ) [ ] abo o aab
Kab-N a b -N b

t te e exp( )ε ε⎡ ⎤− =⎢ ⎥⎣ ⎦                                                                      (8) 
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with  ob , abK , abN , being temperature dependent positive parameters.  Since t texp( )ε ε ε= , as shown for a ,ab  

is constant in tensile tests with fixed value of the engineering strain rate ε  and o oab a b=  when  0ε = .  If we 

define ( )o oab a bab ln e -e= , from (8) it is also possible to obtain the following relations: 
 

     ( )o oab a bab ln e e= +            ab aband      ab K ln( ) Nε= +                                                                        (9) 
 

To simplify the model, it will be assumed from now on that o oa b 0= , hence: 
 

     ( )ab
t t ab abab( , ) ln e 1      with      ab K ln( ) N  ε ε ε= + = +                                                               (10) 

 
Thus parameter t tb( , )ε ε can  now be expressed  as ab  and a  ratio: 

                                                             

     
( )
( )

ab
t t

a at t ab aba
t t

ln e 1ab( , )
b( , )  with a K ln( ) N , ab K ln( ) N  

a( , ) ln e 1
ε ε

ε ε ε εε ε
+

= = = + = +
+

              (11) 

  
Considering relation (11),  it is easy to verify that b increases with increasing ε  for aabK K> , whileb decreases 
with increasing ε  for aabK K< . Although expressions (5) and (8) are strongly non-linear, all parameters aK , aN ,  

abK , abN  can be identified from two tensile tests with constant engineering strain rates 1ε  and  2ε . In a tensile test 
with constant engineering stress rate iε ,  from (4) , true stress tσ  can be expressed as   

 

      [ ]t ti ia 1 exp( b )σ ε= − −                                                                                                                                    (12) 
  
with                                                

     

i i

i a t t a i i ab t t aba K ln exp( ) +N     ,       a b K ln(exp( ) ) Nε ε ε ε
ε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥= = +⎢ ⎥
⎢ ⎥⎣ ⎦

                                  (13a-13b) 

 
     Parameters ia   and ib  can be identified from the true stress vs true strain curve obtained in a tensile test with 
constant engineering strain rate ε  using a minimum squares curve fitting technique or using the following simpler 
procedure: 
 
3.1.  Identification of ia  
 

Parameter ia can be identified from the true stress vs true strain curve. From (12), it is possible to obtain: 

 

     i
t ilim ( ) a

ε
σ

→∞
=                                                                                                                                                         (14)   

Hence, ia  is the maximum value of the stress tσ  (Fig.2).  
 
3.2.  Identification of  ib  

From (12) it is also possible to verify that     t
i i

t
t

d
d 0

a b
σ
ε ε =

=
.
Hence, once ia  is known, ib  can be identified from 

the initial slope of the true stress vs true strain curve.  From (12) it is even possible to obtain 
 

       ti
ti

i

a
exp( b )

a
σ

ε
⎛ ⎞−⎜ ⎟− = ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

    or,     ti
ti

i

a
b ln

a
σ

ε
⎛ ⎞−⎜ ⎟− = ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 

 
Hence , ib  can be approximated from the following expression: 
 

     

ti
i

t i

a1b ln
a

σ
ε

⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
                                                                                                                                      (15) 
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Figure 2: Identification of parameters ia  and ib  from the true stress vs true strain curve 

 
3.4.  Identification  of  aK , aN , abK , abN  
 

Once 1a , 1b  and 2a , 2b  are identified from two tensile tests with different engineering strain rates 1ε  and  2ε , the 

correspondent values of  1a  , 2a  and  1 1a b  , 2 2a b  are calculated from the definitions: ( )ia
ia ln e -1=   ;  

( )i ia b
i ia b ln e -1= . These values permit to identified the parameters aK , aN , bK , bN  as shown below. From 

(13a) it is possible to obtain 
 

     ( )1 a 1 aa K ln  = N  ε−  and    ( )[ ]a a22 K ln  = Na ε− −                                                                       (16), (17) 
 

Hence, combining these equations it is possible to obtain 
 

     
( ) ( )[ ]

( ) ( )a a1 2
1 2

1 2
1 2 = K ln ln K  = 

ln ln

a a
a a  ε ε

ε ε
−

− ⇒
−

−                                                                               (18) 

 
The parameter aK  can be obtained from the following equation 
 
     ( )a 1 a 1N  = a K ln  ε−                                                                                                                                       (19) 

 
Once parameters aK , aN  are known, it is possible to calculate ia  for different strain rates and then obtain  the 
correspondent ia  values from equation (7):                                                        

 

     ( )iaia = ln 1 e+                                                                                                                                                      (20) 
 
With a similar procedure, from (13b), it is possible to verify that 
 

    ( )1ab ab1 1 K ln  = N a b  ε−  and   ( )[ ]2 2 2ab aba b K ln  = Nε− −
   

                                                       (21), (22) 
 
Hence, combining these equations it is possible to obtain 
 

     
( ) ( )[ ]

( ) ( )
1 1 2 2

1 2ab ab
1 2

1 1 2 2
a b a b

= K ln ln K  = 
ln ln

a b a b ε ε
ε ε

−
− − ⇒

−
                                                                        (23) 

 
Parameter abN  can be obtained from the following equation 
                                                          
    ( )1ab ab1 1N  = K ln  a b ε−                                                                                                                                          (24) 
   
Once parameters abK , abN  are known, it is possible to calculate i ia b   for different strain rates and then obtain the 
correspondent i ia b  values from relation (10):  
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     ( )i ia b
i ia b = ln 1 e+                                                                                                                                                (25) 

 
Finally, it is possible to calculate ib  as i ia b  and  ia  ratio. 

     
( )
( )

i i
i i

i i
ii

a b

a
a b

b b
a

ln 1 e

ln 1 e
= ⇒ =

+

+
                                                                                                                             (26) 

 
3.5. Determination of material parameters for magnesium alloy AZ31  at 375 °C with initial grain size d =17μm 
 

In order to identify the parameters that appear in the previous sections, two different series of experimental results 
referred to two tensile tests carried out at different strain rates ( 1 0, 0003 (1/sec)ε =  and 2 0, 01 (1/sec)ε = ) have 
been considered.  

        
   Figure 3: Stress-strain curve and model curve for                   Figure 4: Stress-strain and model curve for        
                          2 0,01 (1/sec)ε =                                                       1 0,0003 (1/sec)ε =  
 
Considering these strain rates we have 1a 16,15 MPa=  ;  1 1a b 1130,5 MPa= ;  2a 38,99 MPa=  ;  

2 2a b 5068,7  MPa= . From (18), (19), (23) and (24) it is possible to obtain aN 0,251= ;  
aK 124,06 MPa= ; abN 68.98= ;  abK 6,51 MPa=  

     Figs. 3 and 4 show the model curves considering these parameters. 
 
4.  Modeling the true stress against true strain curve with damage 
 

Only a few damage models were proposed  for superplastic alloys, such as Chandra (2002). In the present paper it is 
introduced an auxiliary variable D  that accounts for the nucleation and growth of voids observed in tensile tests 
performed at different strain rates. 

 
     HIP 2:     [ ]tt (1 D) a 1 exp( b )     with     0 D 1εσ − − − ≤ ≤=                                                 (27) 

 

     HIP 3: ( )

d

0,  if AUX > 1

1
D  ln AUX ,  if 0 AUX 1

b
1,  if AUX 0

= − < <

<

⎛⎜⎜⎜ ⎡ ⎤⎜⎜ ⎢ ⎥⎜ ⎣ ⎦⎜⎜⎜⎜⎝

          ( )t d

d

 - K /b
with    AUX=1-

a
ε

         (28) 

Where 
 

     [ ] a bd d
d d d d

N
d a a d d a ba K ( ) N         and         a b =Kε ε −= − +                                                          (29a-29b) 

 
All parameters dK , dN , da , db  can be identified from two tensile tests with constant engineering strain rates 1ε  

and  2ε .  Considering  HIP 2.  For a tensile test with constant stress rate iε ,  the damage variable D  can be expressed 
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as  t t

t t
(1 D) D 1

a 1 exp( b ) a 1 exp( b )
σ σ

ε ε⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= − ⇒ = −
− − − −

, after the softening behavior.  Hence, the 

experimental curve D  vs tε  can be easily obtained (Fig.5). 

 
Figure 5: Experimental identification of  the auxiliary variable D . 

 
Since t texp( ) ε ε ε= ,  it is possible  to obtain from HIP 3 

 

     [ ]t d d d a 1 - exp( b D) K /bε = − +                                                                                                      (30) 
 
     Parameters ia   and ib  can be identified from the true stress vs true strain curve obtained in a tensile test with 
constant engineering strain rate ε  using a minimum squares curve fitting technique or using the following simpler 
procedure.  If D 0= ,  from (22) it is possible to obtain t d K / bε =

  
A “corrected curve” is obtained by 

eliminating the viscous  term dK /b  from this curve. 
 
     ( ) [ ]t d dcorrected  a 1 - exp( b D)ε = −                                                                                                                 (31) 
 

 
Figure 6: Damage curve and corrected damage curve obtained from a tensile test with constant engineering stress rate. 

      
     Parameters ia   and ib  can be identified from the true stress vs true strain curve using a minimum squares curve 
fitting technique or using the following simpler procedure. 
 
4.1. Identification of da  
 

From (31), it is possible to obtain: 
 
      ( )t dcorrectedD 1

lim( ) aε
→

=                                                                                                                                         (32) 
 

Hence, da  is the value of the corrected strain  ( )t correctedε  when D 1→  
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 4.2. Identification of db  

From (31) it is possible to verify that    
( )t corrected

d d

d
dD

D 0
a b

ε

=
= Hence, once da  is known, db  can be 

identified from the initial slope of the true corrected damage curve.  From (30) it is possible to obtain   
( )td corrected

d
d

a
exp( b D)

a
ε⎛ ⎞−⎜ ⎟− = ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

   or,   
( )td corrected

d
d

a
b D ln

a
ε⎛ ⎞−⎜ ⎟− = ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 

     db  can be approximated from the following expression: 
 

      ( ) ( )td corrected
d

d

a1b ln
D a

ε⎛ ⎞−⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
                                                                                                                    (33) 

 

 
Figure 7: Identification of the parameters da and  db  from the true stress vs true strain curve 

 
4.3.  Identification of daK , daN , d da bK , d da bN  
 

Once 
1da , 1db  and 

2da , 2db  are identified from two tensile tests with different engineering strain rates 1ε  and  2ε , 
the parameters daK , daN , d da bK , d da bN can also be identified. From (29a) it is possible to obtain 

 

d d 1
a a1 dK N aε− + =  and [ ]d d 2a 2 a dK N aε− − + =  

 
Hence, combining these equations it is possible to obtain 
 
     ( ) 1 2

d 1 2 d

d d
a 2 1 d d a

2 1

a a
K a a Kε ε ε ε

−
− = − ⇒ = −                                                                                           (34) 

 
The parameter daN  can be obtained from the following equation 
      

     d 1 da d a 1N a K ε= +                                                                                                                                                (35) 
 
While from (29b) we have 

 

d d d d 1 1a b a b 1 d dln(K ) N ln( ) ln(a b )ε+ = and  [ ]d d d d 2 2a b a b 2 d dln(K ) N ln( ) ln(a b )ε− + =  
 
which combined give d da bN  

      [ ] [ ] [ ]
[ ]

1 1 2 2
d d 1 1 2 2 d d

d d d d
a b 1 2 d d d d a b

1 2

ln(a b ) ln(a b )
N ln( ) ln( ) ln(a b ) ln(a b ) N

ln( ) ln( )
ε ε ε ε

−
− = − ⇒ = −             (36) 

Parameter d da bK  can be obtained from the following equation 
 

     a bd d
d d

N
1 1a bK a /( )ε=                                                                                                                                             (37) 
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4.5. Identification of dK  
 

Parameter dK  can be identified from the strain vs damage curves obtained in a tensile test with constant strain rates 

1ε .  and  2ε .  The value dK / bη = can be obtained from both experimental damage curves, considering an 
average value. Hence, we have 
 
       ( )1 1 2 2dK b b / 2η η= +

       
i d i   and  K / bη =                                                                                   (38) 

 
4.6. Determination of material parameters for magnesium alloy AZ31  at 375 °C with initial grain size d =17μm  
 

The experimental damage curves shown in Figs. 8  and  9 have been obtained  for the investigated strain rates 
1 0,0003 (1/sec)ε = and 2 0,01 (1/sec)ε =  

         
 
    Figure 8: Corrected damage curve.  Model                                       Figure 9: Corrected damage curve. Model                           
      and experiment. 1 0,0003 (1/sec)ε = .                                         and experiment. 2 0,01 (1/sec)ε = .                                  
 
For 1 0,0003 (1/sec)ε =  the model curve which fits the experimental corrected damage curve gives 

1 0,067η = , 1da 1,12=   and  1 1d da b 13,44=  while for 2 0,01 (1/sec)ε = the model curve gives 

2 0,12η = , 2da 0,72=   and 2 2d da b 7,92=   (Fig 8 and 9).  Thus, from (34), (35), (36) and (37)  it is possible to 
obtain 

daN 1,16= ;  
daK 43,29= − ;  

d da bN 0,13= − ; 
d da bK 4,28=  while relation (38) gives

dK 8,71= .  Hence, the following coefficients were identified for the examined magnesium alloy while the related 
model curves shown in Fig. 10 have been obtained: 1a 16,20 MPa=     ;  1 1a b 1130,5 MPa=    ;  

2a 38,99 MPa=    ;   2 2a b 5068,7  MPa=    ; aN 68,92=    ;  aK 6,50 MPa=    ;   abN 10236=    
;   abK 1122,1 MPa=     ;  dK 8,71=  1da 1,15=    ;   1 1d da b 12,65=     ;    2da 0,73=     ;   

2 2d da b 7,92=  ;
daN 1,16=    ;  

daK 43,29= −     ;    
d da bN 0,13= −     ;   

d da bK 4,28=  
 

 
Figure 10: Stress-strain curve for 1 0,0003(1/sec)ε =   and 2 0,01(1/sec)ε =  for a magnesium alloy                                

AZ31B-F at 375  °C 
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5.  Proposed model  
 
From  section (3) and (4) the model equations can be summarized as follows: 
 

[ ]tt (1 D) a 1 exp( b )     with     0 D 1εσ − − − ≤ ≤=                      
                                
Where 

 

( )

d

0,  if AUX > 1

1
D  ln AUX ,  if 0 AUX 1

b
1,  if AUX 0

= − < <

<

⎛⎜⎜⎜ ⎡ ⎤⎜⎜ ⎢ ⎥⎜ ⎣ ⎦⎜⎜⎜⎜⎝

          ( )t d

d

 - K /b
with    AUX=1-

a
ε

       

and 

( )a
a aln e -1 K ln( ) Nε= +   ,     ( )ab

ab abln e -1 K ln( ) Nε= +  ,    
[ ]t d

d

 - K / b
AUX=1-  

a
ε⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

   ,      

[ ] a bd d
d d d d

N
d a a d d a ba K ( ) N        ,       a b =Kε ε −= − +  

 

                                             
Figure 11a-b: Step Test curve from Del Valle 2005 and model  for a magnesium alloy AZ31 at 375 °C  

( 0 0 0a a b 0= = ) 

  
Figure 12a-b: Step Test curve from Del Valle 2005 and model curve for a magnesium alloy AZ31 at 375 °C  

( 0 0 0a =3 , a b 135= ) 
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Using the coefficient previously identified, it is now possible to predict the mechanical behavior of the same 
magnesium alloy deformed at the same conditions but at a different value of engineering strain rate. Good results have 
been observed applying the model to the step test experimental data taken from Del Valle 2005 and referred to the same 
material tested in the previous tensile tests (Fig. 11). Nevertheless, as shown in Fig. 11b, unrealistic previsions of the 
superplastic behavior can be observed for the lowest strain rates as 0,000075 (1/sec)ε =  

0,00002 (1/sec)ε = . Such limitation can be circumvented by taking  the parameters oa  and ob  different from 
zero.  When nonzero values are assumed for 0a  and 0b ,  good fitting curves can be obtained even for low values of 
strain rate as it can be seen in Fig. 12a-b. The hypothesis of nonzero values for 0a  and 0b  suggests, as reported by 
literature, an evidence of some form of threshold stress for superplastic flow since dislocation activity is not normally 
observed at lower strain rates.  
 
6. Concluding remarks 

 
The one-dimensional phenomenological damage model proposed on this paper is able to perform a mathematically 

correct and physically realistic description of plastic deformations, strain hardening, strain softening, strain rate 
sensitivity and damage  observed in tensile tests performed at different strain rates and temperatures.  

The identification of parameters that appear in the theory is discussed in detail and examples concerning the 
modeling of tensile tests of a magnesium alloy at different strain rates and temperatures are presented and analyzed. It is 
necessary to perform only two tensile tests at different strain rates in order to identify the parameters that appear in the 
theory. The results obtained show a good agreement between experimental results and model prevision for different 
strain rates. Finally, it is important to observe that it is necessary to adapt such model to account for compression 
loading, what can be done through the introduction of a new auxiliary variable related to the cumulated plastic strain. It 
is also necessary an adequate thermo mechanical framework in order to extend the proposed model to a tri-dimensional 
context, which is essential since one of the main practical motivation to study such alloys is  the superplastic forming 
(SPF) of sheet metals. In a tri-dimensional context, the adequate choice of the measure of strain and of the objective 
time derivative is essential to build a physically realistic and mathematically correct model (Costa-Mattos,  1998). 
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