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Abstract. This paper considers how to enumerate the basic set of all thenon-isomorphic configurations of a planar meta-
morphic robotic system. Metamorphic robotic systems are being widely studied because their shape changing abilities
make them potentially useful for a larger set of tasks that conventional robotic systems are unable to develop, for ex-
ample reconnaissance, exploration, satellite recovery, or operation in constrained environments inaccessible to humans,
(e.g., nuclear reactors, space or deep water). A metamorphic robotic system is a collection of mechatronic modules that
can dynamically self-reconfigure in a variety of configurations, kinematic chains, to meet different or changing task re-
quirements. However, due to typical symmetries in module design, different assemblies may generate isomorphic robotic
structures. To solve this problem, we use group theory toolsfor the identification of symmetries of metamorphic robotic
systems. In particular, we define the concept of binary orbits of the automorphism group of the graphs associated with
the metamorphic robot configurations. Another issue considered in this paper is the motion planning of a metamorphic
robot system, i.e., how to determine a sequence of module movements required to go from a given initial configurations
to a desired final configuration. The paper solved the fundamental problem which is to determine the set of all possible
configurations. Knowing all the possible configurations, the motion planning is solved with algorithms proposed in the
literature.

Keywords: metamorphic robot configurations, group theory, symmetry,isomorphisms, automorphisms, orbits, motion
planning.

1. INTRODUCTION

A metamorphic robotic system is a collection of mechatronicmodules that can dynamically self-reconfigure (Chirikjian,
1994). A change in the macroscopic morphology results from the locomotion of each module over its neighbors.
Chirikjian (1994, 1996) present some applications of metamorphic robotic systems. One application in particular, civil
structures in times of emergency, evince the importance of previously knowing all the possible configurations that a
predetermined finite number of modules can assume.

There are some intriguing questions in the literature of modular and metamorphic robots which are sometimes implicit
in the context:

1. How to enumerate all possible configurations that a metamorphic robotic system can assume (Chen and Burdick,
1998);

2. How to find the optimal configuration for a predetermined task (Chen and Burdick, 1995; Bi et al., 2003);

3. How to plan the movement of a metamorphic robot system,i.e.how to determine a sequence of module movements
required to go from a given initial position to a desired goalconfiguration (Pamecha et al., 1997; Chiang and
Chirikjian, 2001).

Questions 2 and 3 are relatively frequent in the metamorphicrobot literature. Chen and Burdick (1995) consider the
problem of finding an optimal module assembly configuration for a specific task. Their solution was formulated as a
discrete optimization procedure. Bi et al. (2003) define theconfiguration space as the set of all feasible configuration
variations of the robotic system and evaluate system adaptability for reconfigurable robotic systems with large variations
in configurations. They also described as to achieve task-oriented configuration design of reconfigurable robotic systems.

Chirikjian and Pamecha (1996) proposed lower and upper bounds to the number of moves needed to change such
systems from any initial to any final specified configuration.Pamecha et al. (1997) introduced the concept of distance
between metamorphic robot configurations and demonstrate that this distance satisfies the formal properties of a metric.
These metrics are applied to the automatic self-reconfiguration of metamorphic systems for computing the optimal se-
quence of movements required to reconfiguration. Dumitrescu et al. (2004) present a number of fast formations for both
rectangular and hexagonal systems, and presented lower andupper bounds on the speed of locomotion. Kamimura et
al. (2003) propose an offline method to generate a locomotionpattern automatically for a modular robot in an arbitrary
module configuration.

Question 1, the problem of enumerating the set of kinematically distinct modular robot assembly configurations from
a given set of modules, was addressed by Chen and Burdick (1998) . They introduced a representation of a modular robot
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assembly configuration as an assembly incidence matrix and defined equivalence relations based on symmetries in module
geometry and graph isomorphisms on the assembly incidence matrix. They also presented an algorithm to identify the
kinematically equivalent robots. Chitta and Ostrowski (2006) also focused on enumeration of distinct configurations of a
modular robot.

This paper focuses firstly on question 1 above,i.e.how to enumerate the basic set of all the non-isomorphic configura-
tions of a metamorphic robotic system or, in other words, howmany different kinematic chains may be spanned by a given
finite set of modules. By different kinematic chains, it is meant all the non-isomorphic configurations of a metamorphic
robotic system. Other configurations may be obtained later by basic operations of group, reflection symmetry and mirror
symmetry.

The remaining questions 2 and 3 are straightforwardly solved when all the non-isomorphic configurations of a meta-
morphic robotic are obtained. Using algorithms proposed inliterature (Walter et al., 2005; Walter et al., 2004; Chiangand
Chirikjian, 2001; Casal and Yim, 1999; LaValle, 2006) basicreconfiguration operations between the configurations can
be precomputed, optimized and stored. The sequence of module movements required to go from a given initial position to
a desired goal configuration, already known, consists of an ordered series of simple, precomputed sub-reconfigurations.

Common planar module designs are square (Pamecha et al., 1996; Dumitrescu et al., 2002; Chiang and Chirikjian,
2001), hexagonal (Pamecha et al., 1996; Abrams and Ghrist, 2004; Walter et al., 2004; Dumitrescu et al., 2002; Walter
et al., 2002), For spatial metamorphic systems there are cubic (Rus and Vona, 2001; Yoshida et al., 1998) and dodecahedral
(Yim et al., 1997; Yim et al., 2001) modules. Due to the inherent symmetries of these module designs, different assemblies
of these modules may lead to several kinematically isomorphic robotic structures. To identify these symmetries, hence
eliminating isomorphisms, in metamorphic robotic systemswe use group theory, in particular the concept of orbits of
automorphisms groups. This concept was previously appliedto identify all inversions of a kinematic chains by Simoni
et al. (2008, 2009). This tool helps avoiding isomorphisms in enumeration of planar metamorphic robots configurations;
therefore, all non-isomorphic configurations are enumerated.

The remainder of this paper is structured as follows. Section 2 introduces basic definitions, tools and examples of
group theory that are used in method of enumeration of configurations of metamorphic robots. Section 3 identifies the
symmetry of classical modules by group theory and present a concept of binary orbits, the basic concept of the proposed
technique for enumeration of configurations of metamorphicrobot systems is described in Section 4. Section 5 discuses
the question on how to plan the movement of a metamorphic robot system. Section 6 discusses some implementation
details of the technique. The conclusions and final remarks are presented in section 7.

2. GROUP THEORY TOOLS

Groups are abstract structures used in mathematics and science in general to capture the internal symmetry of a
structure in the form of group of automorphisms. To enumerate all possible configurations of a metamorphic robotic
system is fundamental to know which is the symmetries of the structure to prevent isomorphic structures. Below we
present the essential definitions of group theory found in the literature (Alperin and Bell, 1995; Burrow, 1993; Rotman,
1995; Scott, 1964).

Definition 1 (Group) A group is a setG with a binary operation∗ : G × G → G that satisfies the following 3 axioms:
(i) Associativity: For alla, b andc in G, (a ∗ b) ∗ c = a ∗ (b ∗ c).
(ii) Identity element: There is an elemente in G such that for alla in G, e ∗ a = a ∗ e = a.
(iii) Inverse element: For eacha in G, there is an elementb in G such thata∗b = b∗a = e, wheree is an identity element.

Definition 2 (Subgroup) A set G’ is a subgroup of a group G if it is a subset of G and is a group using the operation
defined on G.

Definition 3 ((Left) group action) A left group action of a groupG on a setX is a binary function

G × X → X

(g, x) 7→ g · x

which satisfies the following two axioms:
(i) (gh) · x = g · (h · x) for all elementsg, h in the groupG andx in the setX .
(ii) e · x = x for every elementx in the setX (wheree denotes the identity element of the groupG).

Analogously, the right group action is defined. From now on, we use the term action for left action, unless otherwise
stated.

Definition 4 (Symmetric group) The symmetric group on a setX , denoted bySX , is the group whose underlying set is
the set of all bijective functions fromX to X , in which the group operation is that of composition of functions.
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The symmetric group on the finite setX = {1, 2, . . . , n} is denoted asSn and allσ ∈ Sn will be denoted by

σ =

(

1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

.

Subgroups ofSn are called permutation groups. Permutations can also be represented by a binary matrix operation. For
instance,

σ =

(

a b c

b a c

)

can be represented as (left group action)




b

a

c



 =


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0 1 0
1 0 0
0 0 1
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 ·
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
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b
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

 .

The set of graph verticesVn = {1, 2, 3, . . . , n} form a permutation group and the definitions above can be applied.

Example 1 Figure 1(a) shows the metamorphic robot with two hexagonal modules presented by Pamecha et al. (1996).
Figure 1(b) shows the kinematic chain of this metamorphic robot configuration and Fig. 1(c) its graph representation
(G). Figures 2(a) and 2(b) shows the action ofσ1 and σ2 in G, respectively, on the labels of the metamorphic robot
configuration, where

σ1 =

(

1 2 3 4 5 6 7 8 9 10 11
2 1 10 9 8 7 6 5 4 3 11

)

=

(

1
2

) (

3
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) (
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) (

11
11

)

= (12)(310)(49)(58)(67)(11)

and

σ2 =

(

1 2 3 4 5 6 7 8 9 10 11
7 6 5 4 3 2 1 10 9 8 11

)

=

(

1
7

) (
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) (
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5

) (
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4

) (

8
10

) (

9
9

) (

11
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)

= (17)(26)(35)(4)(810)(9)(11)

(a) (b) (c)

Figure 1. (a) metamorphic robot with two hexagonal modules (Fig. 4 of (Pamecha et al., 1996)); (b) kinematic chain and
(c) graph representation.

(a) σ1 (b) σ2

Figure 2. Action ofσ1 andσ2 in G.

Definition 5 (Isomorphism) LetG1 andG2 be two groups. A homomorphism ofG1 in G2 is an applicationφ : G1 → G2

such that, for allx andy in G1

φ(x · y) = φ(x) · φ(y).

If φ is bijective, the application is anisomorphism.
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Therefore, two graphsH andH ′, with verticesVn = 1, 2, ..., n, are said to be isomorphic if there is a permutationσ

of Vn such that{x, y} is in the set of graph edgesE(H) if and only if {σ(x), σ(y)} is in the set of graph edgesE(H ′).
An isomorphism is called an automorphism ifG1 = G2.

Definition 6 (Automorphism) LetG be a group. A isomorphism ofG in G is called anautomorphism.

An automorphism of a graph is a graph isomorphism with itself, i.e. a mapping of the vertices of a given graphH

from the vertices ofH such that the resulting graph is isomorphic withH . The sets of these permutations which map the
graph into itself form a group called the group of automorphisms of the graph. This group of automorphisms is said to be
a vertex-induced group. The group of automorphisms of the graph is a subgroup of the symmetric group and contains all
possible permutations of the vertices that preserve the adjacency. The group of automorphisms of a graph characterizes
its symmetries, and are, therefore, quite useful for determining some of its properties.

Definition 7 (Orbit) Consider a groupG acting on a setX . The orbit of the pointx ∈ X is denoted by

Ox = {g · x | g ∈ G}.

The orbit of a pointx in the setX is the set of elements of the setX to which the pointx can be moved by the elements
of the groupG. The set of orbits of the setX under the action of the groupG form a partition of the setX . The associated
equivalence relation is defined byx ≈ y if and only if there exists an elementg in the set G such thatg ·x = y. The orbits
are equivalence classes under this relation; two elementsx andy are equivalent if and only if their orbits are the same,
i.e.Ox = Oy.

The action of the group of automorphisms of a graph permutes the graph vertices. If a graph vertex of the labelx is
moved by the action of an element of the group of automorphisms to a vertex of the labely, thenx andy are in the same
orbit, i.e.Ox = Oy. For graphs, the equivalence relation is associated with the symmetry of their vertices, if the vertices
of labelsx andy are in the same orbit they have the same properties of symmetry in the graph. The orbit of a graph vertex
corresponds to the set of vertices for which the vertex is moved by the action of the group of automorphisms of the graph.

For the metamorphic robot or graph shown in Fig. 1 the orbits are:
• O1 = {1, 2, 6, 7};
• O2 = {3, 5, 8, 10};
• O3 = {4, 9} and
• O4 = {11}.
Isomorphisms (automorphisms) avoidance is a recurrent problem in topological synthesis of kinematic chains, mech-

anism and manipulator, seee.g.Simoni et al. (2009). This problem is based on graph algorithms and, unless for special
cases, they are non-polynomial-time algorithms (NP-hard). The McKay algorithm (McKay, 1998; McKay, 1990; McKay,
2007) is considered the fastest generic graph algorithm to avoid isomorphisms available today (Jain and Wysotzki,
2005; Foggia et al., 2001; Miyazaki, 1997).

3. STANDARD MODULES AND BINARY ORBITS

In this section, we present the standard modules of metamorphic robots and discuss symmetries of these modules. We
also introduce the fundamental concepts of our technique ofenumeration of planar metamorphic robots configurations:
binary inversions and binary orbits.

As discussed in Section 1., two standard modules applied to planar metamorphic robots are:
• square modules (Pamecha et al., 1996; Dumitrescu et al., 2002; Chiang and Chirikjian, 2001), Fig. 3(a), and
• hexagonal modules (Pamecha et al., 1996; Abrams and Ghrist,2004; Walter et al., 2004; Dumitrescu et al., 2002; Wal-

ter et al., 2002), Fig. 3(b).

(a) (b)

Figure 3. Two standard modules of planar metamorphic robots

Metamorphic robot system with square modules are represented by a four-bar kinematic chain as shown in Fig. 3(a).
Similarly, the hexagonal module is represent by a six-bar kinematic chain as shown in Fig. 3(b). Also, other issues of the
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Figure 4. Configuration of hexagonal metamorphic robot.

metamorphic robot design, such as the polarity (Pamecha et al., 1996), were not considered during the enumeration of
metamorphic robot configurations.

Figs. 3(a) and 3(b), representing the modules, have internal symmetries which may be identified by the orbits of the
automorphisms group. In these modules, all links (edges) have the same properties; therefore, there is a single orbit for
each module:

• square module:O1 = {1, 2, 3, 4} and
• hexagonal module:O1 = {1, 2, 3, 4, 5, 6}.
A general metamorphic robot have multiple orbits. For example, the robot shown in Fig. 4 has the following symme-

tries identified by the orbits of automorphisms group:
• O1 = {1, 6, 10, 15};
• O2 = {2, 5, 11, 14};
• O3 = {3, 4, 12, 13};
• O4 = {22, 24};
• O5 = {7, 9, 16, 18};
• O6 = {8, 17} and
• O7 = {19, 20, 21, 23}.
In kinematic terms, there are two types of links in the metamorphic robot system shown in Fig. 4: binary and qua-

ternary. Binary links 1-18 are connected to two other links while the quaternary links 19-24 are connected to four other
links. Thus, the orbitsO1, O2, O3 andO5 are composed by binary links andO4, O6 andO7 are composed by quaternary
links.

Planar metamorphic robots may have other types of links, butthey must have a subset of binary links since all “ex-
ternal” links are binary. These binary provide means for themovement of the metamorphic robot. Hence, all links of a
metamorphic robot may be divided into two sets: binary and non-binary links.

Definition 8 (Binary orbits) Binary orbits are orbits composed only by binary links.

A property derived from the concept of binary orbits and directly derived from the definition 7 is:

Lemma 9 (Element of binary orbits) Every binary link is an element of a binary orbit.

Using the concepts above, binary links can be classified intobinary orbits. Links in the same binary orbit have identical
symmetry properties in the metamorphic robot configuration. Therefore, when a new module is connected to any link of
a binary orbit, the resulting configurations are isomorphic.

For planar metamorphic robots, a new module can only be connected to links that belong to binary orbits. The binary
orbits for the configuration shown in Fig. 4 are;O1, O2, O3 andO5.

In Section 4., the configurations of metamorphic robot with “n + 1” modules generated by configurations of metamor-
phic robot with “n” modules are explored.

4. ENUMERATION OF PLANAR METAMORPHIC ROBOTS CONFIGURATION S

The enumeration process follows a tree structure. In the root of the tree, a first module is placed. The following
modules are added, one at a time, selecting just one representative for each binary orbit. See definition 8 in section 3..

Orbits are equivalence classes and capture the internal symmetry of a structure (metamorphic robot). The module
elements (links) in the same orbit when connected to other module elements result in isomorphic configurations due to the
symmetry that the orbit represents. For example, Fig. 5 shows a metamorphic robot with two square modules and another
square module will be connected.
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Figure 5. Metamorphic robot with two square modules and another module for connection.

The orbits of automorphisms group of metamorphic robot withtwo square modules are:
• O1 = {1, 4};
• O2 = {2, 3, 5, 6} and
• O3 = {7}.

Since link 7 is quaternary, there are just two binary orbits
• O1 = {1, 4} and
• O2 = {2, 3, 5, 6}.
The connection of a new module with links belonging to a common orbit results in kinematically isomorphic configu-

rations as shown in Figs. 6 and 7. Figure 6 shows that the connection of a new module to the configuration of metamorphic
robot on elements from the orbitO1 = {1, 4} results in isomorphic configurations.

Figure 6. Kinematically isomorphic configurations, obtained from Fig. 5, by connecting another module in orbitO1 =
{1, 4}.

Similarly, Fig. 7 shows that the connection of a new module with elements from the orbitO2 = {2, 3, 5, 6} also results
in isomorphic configurations.

Figure 7. Kinematically isomorphic configurations, obtained from Fig. 5, by connecting another module in in orbit
O2 = {2, 3, 5, 6}.

Summing up, there are only two ways of connecting the new module to the current configuration, as shown in Fig. 8.
Thus, the basic set of all non-isomorphic configurations of aplanar metamorphic robotic system are obtained. This set if
formed by kinematically non-isomorphic metamorphic robots.

Figure 8. Kinematically distinct (non-isomorphic) configurations of a metamorphic robot with three square modules
identified by the orbits of the automorphisms group.

4.1 METAMORPHIC ROBOT CONFIGURATIONS WITH SQUARE MODULES

The technique will be presented by a example using square modules to facilitate the understanding of as the tools are
applied. In section 4.2, we present metamorphic robot configurations with hexagonal modules.

Without loss of generality, for identification of symmetries of metamorphic robot system with square modules by
group theory, we represent this module by a four-bar kinematic chain as shown in Fig. 3(a).

Consider a example with a set of five square modules as shown inFig. 9. We start with a module in the root of the tree
(level 1) and identify all the ways to connect another module, for this we enumerate the binary orbits through the group
theory tools. In the example there are only one binary orbit.Figure 9 marks one representative from each binary orbit
with small inclined parallel lines.
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The next step is to enumerate configurations of metamorphic robots with three square modules adding another module
from the second level of the tree. For this, we enumerate the binary orbits of configuration metamorphic robot of the root.
In this case are two as was illustrated in the Figs. 6, 7 and 8. The configurations metamorphic robot with three square
modules are obtained in the third level of the tree (see Fig. 9).

The configurations metamorphic robot with four square modules are obtained in the fourth level of the tree. In this
level, there are two isomorphic configurations to be eliminated. This isomorphisms elimination is applied in every level
of the tree (see Fig. 9).

Finally, to enumerate the configurations of metamorphic robot with five square modules, all non-isomorphic config-
urations of metamorphic robot with four square modules generated in the fourth level of the tree become roots for the
fifth level. The process repeats: identification of the binary orbits, connection of a new module to single representative
from each binary orbit, and elimination of the isomorphic configurations. At the end, of the process, all non-isomorphic
metamorphic robot configurations with five square modules are obtained in the fifth level of the tree.

The numbers of all non-isomorphic planar metamorphic robotconfigurations with up to five square modules are: (see
Fig. 9):

• 1: with a single module (level 1);
• 1: with two modules (level 2);
• 2: with three modules (level 3);
• 5: with four modules (level 4);
• 12: with five modules (level 5).

4.1.1 Procedure in algorithmic form

In algorithm form, the procedure is summarized as:
Step 1:Calculate the binary orbits of the metamorphic robot configuration of the root.
Step 2:Assemble a new module with one element from each binary orbit, identified in the previous step, of the current

metamorphic robot configuration.
Step 3: Run an (efficient) isomorphisms test to eliminate the possible isomorphic configurations in each level of the

tree.
Group theory allows reducing the number of isomorphisms drastically by preventing symmetries during the assembling

procedure. However, as the number of modules increases, thenumber of isomorphisms increases almost combinatorially
and the process becomes computationally expensive. Hence,there is still a need of a more efficient isomorphism detection.

4.2 METAMORPHIC ROBOT CONFIGURATIONS WITH HEXAGONAL MODUL ES

Let the enumeration of all non-isomorphic planar metamorphic robot configurations with up to four hexagonal mod-
ules. The procedure is presented in the Fig. 10. Besides eacharrow is located the number of binary orbits. The module
of the first level of the tree has only one binary orbit. The metamorphic robot in second level has three binary orbits. The
third level, from left to right, has 2, 7 and 4 binary orbits, respectively.

The numbers of all non-isomorphic planar metamorphic robotconfigurations with up to four hexagonal modules are:
(see Fig. 10):

• 1: with a single module (level 1);
• 1: with two modules (level 2);
• 3: with three modules (level 3);
• 8: with four modules (level 4);

5. MOTION PLANNING

The motion planning problem for a self-reconfigurable metamorphic robotic system is to determine a sequence of
robot motions required to go from a given initial configuration to a desired goal configuration.

It would be desirable to design an optimal algorithm that minimizes the number of steps required to reach the final
configuration. However, there is no simple solution for computing the optimal sequence of moves required to reconfigure.
The reason is that the search space,i.e. the number of possible sequences of configurations, grows exponentially with the
number of modules in the system. It is a combinatorial optimization problem that bears the hallmarks of a NP-complete
problem, although no formal proof has been published yet (Walter et al., 2005).

This paper solved the fundamental problem related on question 1 which is the determination of all possible non-
isomorphic kinematically configurations with a determinednumber of modules. After known the set of possible solutions
to the questions 2 and 3 are solved with the algorithms proposed in literature (Walter et al., 2005; Walter et al., 2004; Chi-
ang and Chirikjian, 2001; Casal and Yim, 1999; LaValle, 2006; Kamimura et al., 2003). A interesting algorithm is
proposed by Casal and Yim (1999) where the basic operations in the configurations with few modules are pre-calculated,
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Figure 9. Enumeration of all non-isomorphic metamorphic robot configurations (bold lines) with up to five square mod-
ules. Configurations with thin lines are those discarded dueto isomorphism with previously generated kinematic chains.

optimized and the number of moves stored on tables. This algorithm can be successfully apply when all configurations
are known,i.e.can be apply in our case. The manner of determine a sequence ofmodule movements required to go from a
given initial position to a desired goal configuration, already known, consists of an ordered series of simple, precomputed
sub-reconfigurations.

6. DISCUSSIONS AND IMPLEMENTATION

To implement our algorithm, we used two freely available software: nauty (McKay, 1990; McKay, 1998; McKay,
2007) and the Boost Graph Library (Siek et al., 2002; BGL, 2000).

Nauty (No AUTomorphisms, Yes?) (McKay, 1990; McKay, 1998; McKay, 2007), is a set of quite efficient C language
procedures for determining the group of automorphisms of a graph with colored vertices. Nauty is also able to generate
a canonically-labeled isomorphic of the graph to assist in isomorphism testing and is considered by some authors as the
fastest graph isomorphism algorithm available today (Jainand Wysotzki, 2005; Foggia et al., 2001; Miyazaki, 1997).

The program nauty (McKay, 1990; McKay, 2007) is used for calculate the binary orbits of automorphisms group of
each robot configuration and for the test of isomorphisms in each level in the tree of generation as shown in Fig. 9. On
the other hand, the interface that generates configurationsof metamorphic robots is based on graph structures components
provided by the Boost Graph Library (Siek et al., 2002; BGL, 2000).

The complexity of our enumeration of metamorphic robot configurations is limited by complexity of the test of iso-
morphisms,i.e. it is exponential time (O(en)) (Jain and Wysotzki, 2005; Foggia et al., 2001; Miyazaki, 1997). The
manipulation of graphs by the Boost Graph Library such as adding edges, adding vertices, vertices iterator among other
routines used in process of generation and manipulation of graphs is of polynomial-time complexity (O(n)).
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Figure 10. Enumeration of all non-isomorphic metamorphic robot configurations (bold lines) with up to four hexagonal
modules. Configurations with thin lines are those discardeddue to isomorphism with previously generated kinematic

chains.

Our next step is to implement the algorithm proposed by Casaland Yim (1999) where basic reconfiguration operations
between the configurations, in the set of all possible configurations, are precomputed, optimized and stored in a table.

7. CONCLUSIONS

This paper introduced a technique for enumeration of all kinematically non-isomorphic planar metamorphic robot
configurations. This technique was applied to the most common planar metamorphic robots, namely square and hexagonal
modules. However, the technique may be easily extended to enumerate non-planar metamorphic robot configurations
based on other types of modules with only minor changes.

This technique may provide a first answer to question 1 of the Introduction:how many possible configurations a finite
set of metamorphic robotic system can assume?

The second related question –“how many modules one must buy/make to have enough kinematicflexibility to perform
task X or Y?”– is only partially answered in this paper, since the correlation between tasks and metamorphic robotic sys-
tem configurations is not addressed here. Conjugating such correlations with an efficient isomorphism-free enumeration
method may possibly yield an interesting topic of research.

Another subject discussed in this paper was the motion planning of a metamorphic robot system,i.e.how to determine
a sequence of module movements required to go from a given initial configuration to a desired goal configuration. The
most relevant algorithms in the literature rely on the extensive enumeration of all metamorphic robot configurations which
can be obtained by our method in a more efficient way.
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