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Abstract. This paper considers how to enumerate the basic set of aldheisomorphic configurations of a planar meta-
morphic robotic system. Metamorphic robotic systems amdwwidely studied because their shape changing abilities
make them potentially useful for a larger set of tasks thaiveational robotic systems are unable to develop, for ex-
ample reconnaissance, exploration, satellite recovergperation in constrained environments inaccessible tmans,
(e.g., nuclear reactors, space or deep water). A metamoniiotic system is a collection of mechatronic modules that
can dynamically self-reconfigure in a variety of configusas, kinematic chains, to meet different or changing task re
quirements. However, due to typical symmetries in modwggdedifferent assemblies may generate isomorphic roboti
structures. To solve this problem, we use group theory timolthe identification of symmetries of metamorphic robotic
systems. In particular, we define the concept of binary srbitthe automorphism group of the graphs associated with
the metamorphic robot configurations. Another issue camsidlin this paper is the motion planning of a metamorphic
robot system, i.e., how to determine a sequence of modulemamis required to go from a given initial configurations
to a desired final configuration. The paper solved the funddaig@roblem which is to determine the set of all possible
configurations. Knowing all the possible configuration® thotion planning is solved with algorithms proposed in the
literature.

Keywords. metamorphic robot configurations, group theory, symmesgmorphisms, automorphisms, orbits, motion
planning.

1. INTRODUCTION

A metamorphic robotic system is a collection of mechatromclules that can dynamically self-reconfigure (Chirikjian
1994). A change in the macroscopic morphology results frbemlocomotion of each module over its neighbors.
Chirikjian (1994, 1996) present some applications of metguhic robotic systems. One application in particularjlciv
structures in times of emergency, evince the importancerefipusly knowing all the possible configurations that a
predetermined finite number of modules can assume.

There are some intriguing questions in the literature of utexdand metamorphic robots which are sometimes implicit
in the context:

1. How to enumerate all possible configurations that a meahio robotic system can assume (Chen and Burdick,
1998);

2. How to find the optimal configuration for a predetermineskt@Chen and Burdick, 1995; Bi et al., 2003);

3. How to plan the movement of a metamorphic robot systentjow to determine a sequence of module movements
required to go from a given initial position to a desired goahfiguration (Pamecha et al., 1997; Chiang and
Chirikjian, 2001).

Questions 2 and 3 are relatively frequent in the metamoniftiot literature. Chen and Burdick (1995) consider the
problem of finding an optimal module assembly configurationd specific task. Their solution was formulated as a
discrete optimization procedure. Bi et al. (2003) definedbefiguration space as the set of all feasible configuration
variations of the robotic system and evaluate system abiiptdor reconfigurable robotic systems with large vaioais
in configurations. They also described as to achieve tagkv®d configuration design of reconfigurable robotic syste

Chirikjian and Pamecha (1996) proposed lower and upperd®tmthe number of moves needed to change such
systems from any initial to any final specified configurati®amecha et al. (1997) introduced the concept of distance
between metamorphic robot configurations and demonstratetiis distance satisfies the formal properties of a metric
These metrics are applied to the automatic self-reconfiguraf metamorphic systems for computing the optimal se-
guence of movements required to reconfiguration. Dumitres@l. (2004) present a number of fast formations for both
rectangular and hexagonal systems, and presented lowerpged bounds on the speed of locomotion. Kamimura et
al. (2003) propose an offline method to generate a locomgiédiern automatically for a modular robot in an arbitrary
module configuration.

Question 1, the problem of enumerating the set of kinemitidastinct modular robot assembly configurations from
a given set of modules, was addressed by Chen and BurdicBY19%ey introduced a representation of a modular robot
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assembly configuration as an assembly incidence matrix @fimtbdl equivalence relations based on symmetries in module
geometry and graph isomorphisms on the assembly incideat@xmThey also presented an algorithm to identify the
kinematically equivalent robots. Chitta and Ostrowskiq@palso focused on enumeration of distinct configuratidras o
modular robot.

This paper focuses firstly on question 1 abdve how to enumerate the basic set of all the non-isomorphic gord
tions of a metamorphic robotic system or, in other words, hwmy different kinematic chains may be spanned by a given
finite set of modules. By different kinematic chains, it isaneall the non-isomorphic configurations of a metamorphic
robotic system. Other configurations may be obtained latdrasic operations of group, reflection symmetry and mirror
symmetry.

The remaining questions 2 and 3 are straightforwardly sbivieen all the non-isomorphic configurations of a meta-
morphic robotic are obtained. Using algorithms proposditdérature (Walter et al., 2005; Walter et al., 2004; Chiand
Chirikjian, 2001; Casal and Yim, 1999; LaValle, 2006) basiconfiguration operations between the configurations can
be precomputed, optimized and stored. The sequence of mouwlements required to go from a given initial position to
a desired goal configuration, already known, consists ofrdared series of simple, precomputed sub-reconfigurations

Common planar module designs are square (Pamecha et &, R@Mitrescu et al., 2002; Chiang and Chirikjian,
2001), hexagonal (Pamecha et al., 1996; Abrams and Gh@i84; 2Valter et al., 2004; Dumitrescu et al., 2002; Walter
etal., 2002), For spatial metamorphic systems there aiie Rbs and Vona, 2001, Yoshida et al., 1998) and dodecahedra
(Yimetal., 1997; Yim et al., 2001) modules. Due to the inlésymmetries of these module designs, different assemblie
of these modules may lead to several kinematically isomonmtbotic structures. To identify these symmetries, hence
eliminating isomorphisms, in metamorphic robotic systemesuse group theory, in particular the concept of orbits of
automorphisms groups. This concept was previously apptiedentify all inversions of a kinematic chains by Simoni
et al. (2008, 2009). This tool helps avoiding isomorphismsnumeration of planar metamorphic robots configurations;
therefore, all non-isomorphic configurations are enunegkat

The remainder of this paper is structured as follows. SeQidntroduces basic definitions, tools and examples of
group theory that are used in method of enumeration of corafiguns of metamorphic robots. Section 3 identifies the
symmetry of classical modules by group theory and preseahaspt of binary orbits, the basic concept of the proposed
technique for enumeration of configurations of metamorpdiiot systems is described in Section 4. Section 5 discuses
the question on how to plan the movement of a metamorphictr®®iem. Section 6 discusses some implementation
details of the technique. The conclusions and final remaskpresented in section 7.

2. GROUP THEORY TOOLS

Groups are abstract structures used in mathematics anmkcecie general to capture the internal symmetry of a
structure in the form of group of automorphisms. To enungesdit possible configurations of a metamorphic robotic
system is fundamental to know which is the symmetries of thectire to prevent isomorphic structures. Below we
present the essential definitions of group theory found énliterature (Alperin and Bell, 1995; Burrow, 1993; Rotman,
1995; Scott, 1964).

Definition 1 (Group) A group is a set7 with a binary operation: : G x G — G that satisfies the following 3 axioms:
(i) Associativity: For alla, bandcin G, (a *b) x c = a * (b* ¢).

(i) Identity element: There is an elemenin G such that for alla in G, e xa = a * e = a.

(iii) Inverse element: For eachin G, there is an elemeistin G such thatuxb = bxa = e, wheree is an identity element.

Definition 2 (Subgroup) A set G’ is a subgroup of a group G if it is a subset of G and is augrasing the operation
defined on G.

Definition 3 ((Left) group action) A left group action of a groug- on a setX is a binary function

GxX—-X

(g,2)—~g-x

which satisfies the following two axioms:
(i) (gh) -2 =g - (h-z) for all elementg;, h in the groupG andz in the setX.
(i) e - x = x for every element in the setX (wheree denotes the identity element of the graip

Analogously, the right group action is defined. From now oe,use the term action for left action, unless otherwise
stated.

Definition 4 (Symmetric group) The symmetric group on a s&t, denoted by5'x, is the group whose underlying set is
the set of all bijective functions frotd to X, in which the group operation is that of composition of fuoics.
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The symmetric group on the finite s&t= {1,2,...,n} is denoted a§,, and allo € S,, will be denoted by

B 1 2 ... n
7T\ e) 0@ - oln) )
Subgroups of5,, are called permutation groups. Permutations can also besepted by a binary matrix operation. For
instance,

[ a b c
7=\ b a ¢

can be represented as (left group action)

b 010 a
a|=1001|-]0b].
c 0 0 1 c
The set of graph verticdg, = {1, 2, 3,...,n} form a permutation group and the definitions above can beexppl

Example 1 Figure 1(a) shows the metamorphic robot with two hexagorautes presented by Pamecha et al. (1996).
Figure 1(b) shows the kinematic chain of this metamorphbmtaconfiguration and Fig. 1(c) its graph representation

(@). Figures 2(a) and 2(b) shows the actionaf and o, in G, respectively, on the labels of the metamorphic robot
configuration, where

_ (12 3 45678910 11)_(1 3 A . ; .
_ ((122)(310)(1(;)(28)567)7(11? v 11) (2)(10)(9>(8)(7)(11)
and
I

1
(17)(26)(35)(4)(810)(9)(11)

Fu

Figure 1. (a) metamorphic robot with two hexagonal modutég. (4 of (Pamecha et al., 1996)); (b) kinematic chain and
(c) graph representation.

(@) o1 (b) o2
Figure 2. Action ofo; andos in G.

Definition 5 (Isomorphism) LetG, andG be two groups. A homomorphism®f in G4 is an applicationp : G — G4
such that, for alle andy in G

o(x-y) = d(x) - p(y).

If ¢ is bijective, the application is aisomorphism
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Therefore, two graph&# andH’, with verticesV,, = 1,2, ..., n, are said to be isomorphic if there is a permutation
of V,, such thaf{z, y} is in the set of graph edgés(H) if and only if {o(z), o(y)} is in the set of graph edgés(H’).
An isomorphism is called an automorphisn@if = Gs.

Definition 6 (Automorphism) LetG be a group. A isomorphism 6f in G is called anautomorphism

An automorphism of a graph is a graph isomorphism with itsedf a mapping of the vertices of a given graph
from the vertices off such that the resulting graph is isomorphic with The sets of these permutations which map the
graph into itself form a group called the group of automospis of the graph. This group of automorphisms is said to be
a vertex-induced group. The group of automorphisms of taplyis a subgroup of the symmetric group and contains all
possible permutations of the vertices that preserve trecadpy. The group of automorphisms of a graph characterizes
its symmetries, and are, therefore, quite useful for deténg some of its properties.

Definition 7 (Orbit) Consider a grougz acting on a sefX. The orbit of the point € X is denoted by
O,={g-z|geG}.

The orbit of a pointr in the setX is the set of elements of the sEtto which the point: can be moved by the elements
of the groupz. The set of orbits of the sé& under the action of the grou form a partition of the sek. The associated
equivalence relation is defined by~ y if and only if there exists an elemenin the set G such that- « = y. The orbits
are equivalence classes under this relation; two elemeatgly are equivalent if and only if their orbits are the same,
i.e.0y = 0,.

The action of the group of automorphisms of a graph permbtegtaph vertices. If a graph vertex of the labés
moved by the action of an element of the group of automorphisna vertex of the label, thenxz andy are in the same
orbit,i.e. O, = O,. For graphs, the equivalence relation is associated wilsyinmetry of their vertices, if the vertices
of labelsz andy are in the same orbit they have the same properties of syminetre graph. The orbit of a graph vertex
corresponds to the set of vertices for which the vertex iseddoy the action of the group of automorphisms of the graph.

For the metamorphic robot or graph shown in Fig. 1 the orlvéds a

e (D) = {1, 2.6, 7},

e 0y ={3,5,8,10};

e 03 ={4,9}and

L] (94 = {11}

Isomorphisms (automorphisms) avoidance is a recurrefigmoin topological synthesis of kinematic chains, mech-
anism and manipulator, seeg.Simoni et al. (2009). This problem is based on graph algmstiand, unless for special
cases, they are non-polynomial-time algorithms (NP-hartg McKay algorithm (McKay, 1998; McKay, 1990; McKay,
2007) is considered the fastest generic graph algorithmvé@dasomorphisms available today (Jain and Wysotzki,
2005; Foggia et al., 2001; Miyazaki, 1997).

3. STANDARD MODULES AND BINARY ORBITS

In this section, we present the standard modules of metartompbots and discuss symmetries of these modules. We
also introduce the fundamental concepts of our technigumomeration of planar metamorphic robots configurations:
binary inversions and binary orbits.

As discussed in Section 1.two standard modules appliethitmpmetamorphic robots are:

e square modules (Pamecha et al., 1996; Dumitrescu et ak,; 20lang and Chirikjian, 2001), Fig. 3(a), and

e hexagonal modules (Pamechaetal., 1996; Abrams and 0tst; Walter et al., 2004; Dumitrescu et al., 2002; Wal-
ter et al., 2002), Fig. 3(b).

3
(@) (b)
Figure 3. Two standard modules of planar metamorphic robots

Metamorphic robot system with square modules are repreddayta four-bar kinematic chain as shown in Fig. 3(a).
Similarly, the hexagonal module is represent by a six-baeikiatic chain as shown in Fig. 3(b). Also, other issues of the



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

1 15

Figure 4. Configuration of hexagonal metamorphic robot.

metamorphic robot design, such as the polarity (Pamechla, 1986), were not considered during the enumeration of
metamorphic robot configurations.

Figs. 3(a) and 3(b), representing the modules, have ifteynametries which may be identified by the orbits of the
automorphisms group. In these modules, all links (edges) ttee same properties; therefore, there is a single onbit fo
each module:

e square moduled, = {1,2,3,4} and

e hexagonal module?, = {1,2,3,4,5,6}.

A general metamorphic robot have multiple orbits. For exi@nthe robot shown in Fig. 4 has the following symme-
tries identified by the orbits of automorphisms group:

e 0 ={1,6,10,15};

e Oy ={2,5,11,14};

e O3 = {3,4,12,13};

0 O, = {22,24};

e 05 ={7,9,16,18};

e Os = {8,17} and

e O; = {19,20,21,23}.

In kinematic terms, there are two types of links in the metgrhi@ robot system shown in Fig. 4: binary and qua-
ternary. Binary links 1-18 are connected to two other linkslevthe quaternary links 19-24 are connected to four other
links. Thus, the orbit®,, O3, O3 andO5 are composed by binary links ad¥,, Os andO; are composed by quaternary
links.

Planar metamorphic robots may have other types of linkstHayt must have a subset of binary links since all “ex-
ternal” links are binary. These binary provide means forrttevement of the metamorphic robot. Hence, all links of a
metamorphic robot may be divided into two sets: binary anatbioary links.

Definition 8 (Binary orbits) Binary orbits are orbits composed only by binary links.

A property derived from the concept of binary orbits and clisederived from the definition 7 is:

Lemma 9 (Element of binary orbits) Every binary link is an element of a binary orbit.

Using the concepts above, binary links can be classifiediintary orbits. Links in the same binary orbit have identical
symmetry properties in the metamorphic robot configuratidrerefore, when a new module is connected to any link of
a binary orbit, the resulting configurations are isomorphic

For planar metamorphic robots, a new module can only be ated¢o links that belong to binary orbits. The binary
orbits for the configuration shown in Fig. 4 a@i, O5, O3 andOs.

In Section 4.the configurations of metamorphic robot witht 1” modules generated by configurations of metamor-

phic robot with *n” modules are explored.
4. ENUMERATION OF PLANAR METAMORPHIC ROBOTS CONFIGURATION S

The enumeration process follows a tree structure. In theabthe tree, a first module is placed. The following
modules are added, one at a time, selecting just one repagserior each binary orbit. See definition 8 in section 3.

Orbits are equivalence classes and capture the internahsymy of a structure (metamorphic robot). The module
elements (links) in the same orbit when connected to othelutealements result in isomorphic configurations due to the
symmetry that the orbit represents. For example, Fig. 5 steometamorphic robot with two square modules and another
square module will be connected.
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Figure 5. Metamorphic robot with two square modules andfaranodule for connection.

The orbits of automorphisms group of metamorphic robot with square modules are:

e (D) = {1,4},
e 0y ={2,3,5,6}and
o 03 = {7}

Since link 7 is quaternary, there are just two binary orbits

e, ={l,4}and

ey ={2,3,5,6}.

The connection of a new module with links belonging to a commidit results in kinematically isomorphic configu-
rations as shown in Figs. 6 and 7. Figure 6 shows that the ctionef a new module to the configuration of metamorphic
robot on elements from the orlf!; = {1, 4} results in isomorphic configurations.

1 4

Figure 6. Kinematically isomorphic configurations, ob&irfrom Fig. 5, by connecting another module in o®it =

{1,4}.

Similarly, Fig. 7 shows that the connection of a new modul&wiements from the orb, = {2, 3,5, 6} also results
in isomorphic configurations.

Figure 7. Kinematically isomorphic configurations, ob&infrom Fig. 5, by connecting another module in in orbit
0, =1{2,3,5,6}.

Summing up, there are only two ways of connecting the new neadithe current configuration, as shown in Fig. 8.
Thus, the basic set of all non-isomorphic configurations jplbaar metamorphic robotic system are obtained. This set if
formed by kinematically non-isomorphic metamorphic rabot

Figure 8. Kinematically distinct (non-isomorphic) configtions of a metamorphic robot with three square modules
identified by the orbits of the automorphisms group.

4.1 METAMORPHIC ROBOT CONFIGURATIONS WITH SQUARE MODULES

The technique will be presented by a example using squarelle®tb facilitate the understanding of as the tools are
applied. In section 4.2we present metamorphic robot cardigpns with hexagonal modules.

Without loss of generality, for identification of symmegief metamorphic robot system with square modules by
group theory, we represent this module by a four-bar kinenchgin as shown in Fig. 3(a).

Consider a example with a set of five square modules as sholig.i®. We start with a module in the root of the tree
(level 1) and identify all the ways to connect another modidethis we enumerate the binary orbits through the group
theory tools. In the example there are only one binary offbigure 9 marks one representative from each binary orbit
with small inclined parallel lines.
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The next step is to enumerate configurations of metamorpbiats with three square modules adding another module
from the second level of the tree. For this, we enumerateittayorbits of configuration metamorphic robot of the root.
In this case are two as was illustrated in the Figs. 6, 7 andn& cbnfigurations metamorphic robot with three square
modules are obtained in the third level of the tree (see Fig. 9

The configurations metamorphic robot with four square meslalre obtained in the fourth level of the tree. In this
level, there are two isomorphic configurations to be elirr@da This isomorphisms elimination is applied in every leve
of the tree (see Fig. 9).

Finally, to enumerate the configurations of metamorphiotatith five square modules, all non-isomorphic config-
urations of metamorphic robot with four square modules gggted in the fourth level of the tree become roots for the
fifth level. The process repeats: identification of the bjnanbits, connection of a new module to single represergativ
from each binary orbit, and elimination of the isomorphiafigurations. At the end, of the process, all nhon-isomorphic
metamorphic robot configurations with five square moduleatained in the fifth level of the tree.

The numbers of all non-isomorphic planar metamorphic rabafigurations with up to five square modules are: (see
Fig. 9):

e 1: with a single module (level 1);

e 1: with two modules (level 2);

e 2. with three modules (level 3);

¢ 5. with four modules (level 4);

e 12: with five modules (level 5).

4.1.1 Procedure in algorithmic form

In algorithm form, the procedure is summarized as:

Step 1: Calculate the binary orbits of the metamorphic robot coméigjan of the root.

Step 2: Assemble a new module with one element from each binary,adeittified in the previous step, of the current
metamorphic robot configuration.

Step 3: Run an (efficient) isomorphisms test to eliminate the pdss#mmorphic configurations in each level of the
tree.

Group theory allows reducing the number of isomorphismstarally by preventing symmetries during the assembling
procedure. However, as the number of modules increasesuthber of isomorphisms increases almost combinatorially
and the process becomes computationally expensive. Hiece s still a need of a more efficientisomorphism detectio

4.2 METAMORPHIC ROBOT CONFIGURATIONS WITH HEXAGONAL MODUL  ES

Let the enumeration of all non-isomorphic planar metamirpdbot configurations with up to four hexagonal mod-
ules. The procedure is presented in the Fig. 10. Besidesazamh is located the number of binary orbits. The module
of the first level of the tree has only one binary orbit. Thean&trphic robot in second level has three binary orbits. The
third level, from left to right, has 2, 7 and 4 binary orbitsspectively.

The numbers of all non-isomorphic planar metamorphic rabaofigurations with up to four hexagonal modules are:
(see Fig. 10):

e 1: with a single module (level 1);

e 1: with two modules (level 2);

e 3: with three modules (level 3);

e 8: with four modules (level 4);

5. MOTION PLANNING

The motion planning problem for a self-reconfigurable metgrhic robotic system is to determine a sequence of
robot motions required to go from a given initial configuoatio a desired goal configuration.

It would be desirable to design an optimal algorithm thatimines the number of steps required to reach the final
configuration. However, there is no simple solution for cominy the optimal sequence of moves required to reconfigure.
The reason is that the search spaeethe number of possible sequences of configurations, groperentially with the
number of modules in the system. It is a combinatorial opation problem that bears the hallmarks of a NP-complete
problem, although no formal proof has been published yett@iat al., 2005).

This paper solved the fundamental problem related on guredtiwhich is the determination of all possible non-
isomorphic kinematically configurations with a determimesnber of modules. After known the set of possible solutions
to the questions 2 and 3 are solved with the algorithms pexpwsliterature (Walter et al., 2005; Walter et al., 2004{-Ch
ang and Chirikjian, 2001; Casal and Yim, 1999; LaValle, 20Rémimura et al., 2003). A interesting algorithm is
proposed by Casal and Yim (1999) where the basic operaticthgiconfigurations with few modules are pre-calculated,
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Figure 9. Enumeration of all non-isomorphic metamorphlmtaconfigurations (bold lines) with up to five square mod-
ules. Configurations with thin lines are those discardedtdisomorphism with previously generated kinematic chains

optimized and the number of moves stored on tables. Thigitigocan be successfully apply when all configurations
are knownj.e.can be apply in our case. The manner of determine a sequenmuedofe movements required to go from a
given initial position to a desired goal configuration, abtg known, consists of an ordered series of simple, prectedpu
sub-reconfigurations.

6. DISCUSSIONS AND IMPLEMENTATION

To implement our algorithm, we used two freely availabletwafe: nauty (McKay, 1990; McKay, 1998; McKay,
2007) and the Boost Graph Library (Siek et al., 2002; BGL,®00

Nauty (No AUTomorphisms, Yes?) (McKay, 1990; McKay, 199& 4y, 2007), is a set of quite efficient C language
procedures for determining the group of automorphisms abalgwith colored vertices. Nauty is also able to generate
a canonically-labeled isomorphic of the graph to assiss@miorphism testing and is considered by some authors as the
fastest graph isomorphism algorithm available today (dath\Wysotzki, 2005; Foggia et al., 2001; Miyazaki, 1997).

The program nauty (McKay, 1990; McKay, 2007) is used for glate the binary orbits of automorphisms group of
each robot configuration and for the test of isomorphismathdevel in the tree of generation as shown in Fig. 9. On
the other hand, the interface that generates configuratfangtamorphic robots is based on graph structures comp®nen
provided by the Boost Graph Library (Siek et al., 2002; BGQ0@).

The complexity of our enumeration of metamorphic robot guntations is limited by complexity of the test of iso-
morphisms,i.e. it is exponential time @ (™)) (Jain and Wysotzki, 2005; Foggia et al., 2001; Miyazaki971Q The
manipulation of graphs by the Boost Graph Library such asmadeldges, adding vertices, vertices iterator among other
routines used in process of generation and manipulationagitts is of polynomial-time complexity((n)).



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

3445
HENEI S D FER
ENpY::

Figure 10. Enumeration of all non-isomorphic metamorpblmat configurations (bold lines) with up to four hexagonal
modules. Configurations with thin lines are those discamdiegl to isomorphism with previously generated kinematic
chains.

Our next step is to implement the algorithm proposed by Gasalyim (1999) where basic reconfiguration operations
between the configurations, in the set of all possible corditipns, are precomputed, optimized and stored in a table.

7. CONCLUSIONS

This paper introduced a technique for enumeration of alékiatically non-isomorphic planar metamorphic robot
configurations. This technique was applied to the most complanar metamorphic robots, namely square and hexagonal
modules. However, the technique may be easily extendedumerate non-planar metamorphic robot configurations
based on other types of modules with only minor changes.

This technique may provide a first answer to question 1 oftifredluction:how many possible configurations a finite
set of metamorphic robotic system can assume?

The second related questiorirow many modules one must buy/make to have enough kinefteatmility to perform
task X or Y?"—is only partially answered in this paper, since the coti@icbetween tasks and metamorphic robotic sys-
tem configurations is not addressed here. Conjugating surchlations with an efficient isomorphism-free enumeratio
method may possibly yield an interesting topic of research.

Another subject discussed in this paper was the motion pigrof a metamorphic robot systeire. how to determine
a sequence of module movements required to go from a giveal iodnfiguration to a desired goal configuration. The
most relevant algorithms in the literature rely on the egtemenumeration of all metamorphic robot configurationgtvh
can be obtained by our method in a more efficient way.
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