
Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

INTRODUCING OBJECT-ORIENTATION IN UNIFIED PETRI NET
APPROACH

José Reinaldo Silva, reinaldo@usp.br
José Armando San Pedro Miralles, jose.miralles@poli.usp.br
Dept. of Mechatronics and Mechanicals Systems, University of São Paulo, Brazil
Arianna Olivera Salmon, arianna@csd.uo.edu.cu
Computer Science Dept, Universidad de Oriente, Cuba
Pedro M. González del Foyo, pedro.foyo@poli.usp.br
Dept. of Mechatronics and Mechanicals Systems, University of São Paulo, Brazil

Abstract. Since the beginning of this century two major tendencies in the state-of-art of Petri Nets emerged: one is the
confirmation of Petri Nets as a sound formalism to model several discrete systems in different areas of knowledge, since
biological and chemical systems up to the control systems applied to manufacturing and automated process in general;
another tendency is the introduction of a unified approach to Petri Nets, giving another perspective to the profusion of
particular approaches and extensions. Even high-level nets are now envisaged as a general approach that subsumes
elementary nets through Basic High-Level Nets.
However, besides the importance and adherence to the principles behind Petri Nets formalism, there is not a significant
effort to provide practical modeling tools that reflect the new unified view for Petri Nets, maintaining expressibility and the
efficiency to analyze, simulate and document preliminary design of distributed systems. Such approach could be derived
of a full integration between modeling properties and a general design paradigm such as object orientation. That is
what is proposed in the present paper, where a balanced approach between an hierarchical structured approach and a
an inheritable object one is presented in a generic environment called GHENeSys (General Hierarchical Enhanced Petri
Net).
Some partial results of GHENeSys shows a unified object net that tries to encompass all basic features found in classic
extensions while enhances the model to include color sets. This proposal is now evolving to include timed nets as described
shortly in the final sections. A first version of the environment is used to simple workflow problems that requires a different
set of properties of the modeling representation. That shows also the practical advantage of a unified system in conceptual
analysis and properties preserving through the hierarchy. The direct advantages of the folding are not addressed but could
be easily inferred.

Keywords: Petri Nets, unified approach, formal modeling, Discrete Systems

1. INTRODUCTION

Petri Nets were originally created to represent communication processes in engineering and thus attached to a class of
application. Further development make this initial approach to broad, while the formalism of nets were developed, based
on graph theory and recently in type theory, sets, signatures, formal relations and restrictive filters. This broad sense of
Petri Nets brought also a wide demand to apply these formal representation in several different areas, including some
areas outside the scope of engineering. Complex discrete and distributed systems could them be developed since the very
beginning using Petri Nets (PN), what raises the question of how to deploy the PN model to be analyzed and eventually
simulated by a generic token player.

The question becomes a seek for a design approach based on PN instead of just proceedings and direct methods for
a chosen application domain. Thus, it is mister to look for a general paradigm that associate the modeling initiative to
a generic design process. Also, the broader use of PN also directs the use of these formalism in the specification and
Requirement Engineering besides the conventional modeling and design phases. There are several works in the literature
(Santos and Silva, 2004) proposing the use of Petri Nets as a basic formalism to perform requirements analysis. Such
approach had also the advantage of expressing requirements in the same formalism that would be used further in the
design phase - at least for dynamic discrete systems.

Historically the first attempts to integrate PN and design approaches appeared in the beginning of 80’s where the basic
idea was to apply structured analysis using PN (Miyagi, 1988). By this time the appealing discipline created in the project
of numeric code, synthesized in SADT dominated the scene in Engineering and in computer programming. However,
that proposed integration did not introduced any direct change in the formalism of Petri Nets. On the contrary, all the
effort were directed to the construction of a process to synthesize a net, sometimes converted in a programming discipline
(Miyagi et al, 1988).

The structured approach succeed and was effectively used to solve several problems in discrete systems. Systems and
programs continue to grow in size and complexity and other methods were researched such as the object oriented approach.
Now the advantage came from a different kind of abstraction, called inheritance, and other features as polymorphism,

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

encapsulation and a very convincing performance in reusability. All these properties are very useful to face nowadays
discrete systems and to the applications of Petri Nets in business planning and manufacturing workflow, as well as in the
previous class of problems.

Object oriented Petri Nets appeared just to cover this gap (Agha et al, 2001), and a different discussion emerge with
that: how to integrate Petri Nets with Object Oriented Design without loosing the formalism and good practices already
consolidated in the discrete systems analysis. The other side of this question is how to make this same integration in a
way to include the good features and features of the object oriented approach. Initially that discussion was translated in
two different proposals: objects inside Petri Nets and Petri Nets inside objects. The first one tried to come with a net of
objects, where the role of the net was to model the interaction among this objects. The second proposal defined the object
net, that is, an object whose behavior was modeled by a PN. Other proposal appear in the literature even reinforcing one
of the two directions - a net of objects or an object net - and other proposals faced the challenge of trying to find an unified
approach. GHENeSys is one of them.

In the next sections we discuss the basis of this unified approach to integrate PN and object orientation, briefly com-
paring the options taken in the GHENeSys project with other work. The GHENeSys project is still in development but a
public domain tool will be available in the site of Petri Nets World very soon.

2. OBJECT NETS

Since its origin in 1962 (in the doctoral thesis of Carl Adam Petri) Petri Nets have evolved fast in its formalization
while expanding its area of application from the former communication systems to a very wide list of modeling domains.
Therefore it was unavoidable the integration of PNs to the general methods of design of any discrete system or to any
discrete approximation of a distributed system. Consequently, a good question is the integration of PNs in well established
paradigms of design such as the object-oriented approach. In fact the question on “how to synthesize a Petri Net” is dated
from the beginning of the 80’s and early approaches proposed an integration with structured methods such as the SADT
(Miyagi et al, 1988), the main approach in that period. Following, all attention was turned to the integration between Petri
Net approach and object-orientation.

During the 90’s several object-oriented Petri nets(OO-nets) were proposed (Buch and Guelfi, 2000), (Lomazova and
Schnoebelen, 2000) (Rumbaugh et al, 1991), (Lakos, 1995). Basic conceptual questions were the introduction of poly-
morphism and the recursive nature of classes, since an important characteristic of OO-nets is that a net can be in another
net as a token (nets-within-nets paradigm) (Valk, 2004). Such extensions are helpful for modeling hierarchical multi-agent
distributed systems. Lakos et al. modeled network protocols with OO-nets (Lakos et al, 1995). Moldt and Valk (2000)
proposed Bussines Process Petri nets to model workflows by OO-nets opening a possibility to put together application
design and business process.

However, the real challenge was to discover a proper way to integrate a generative synthesis paradigm for design,
such as object-orientation, with relational formal presentation originally designed for communication processes. Even if
we consider the late development of Petri Net formalism as a general modeling approach, a question remains on “how
a net model would be synthesized, particularly to complex systems”. The proposed fusion with object-orientation could
answer that question. On the other hand, this fusion is also a challenge. Thus, unified nets and problem of synthesis and
documentation of systems were not seen as different aspects of the same problem.

The introduction of restrictions in the object properties, such as the restriction in the object structure to single inheri-
tance was the first step towards a general approach to net of object nets. Another interesting topic is to preserve hierarchy
which was already presented even in the colored nets as proposed in Design CPN (Jensen, 1994).

The first version of the GHENeSys (General Hierarchical Enhanced Net System) system faced the challenge of intro-
ducing a simple implementation for the net of object nets, which could instantiate most of the extend nets, most of which
were associated to specific application environments. A good result for that was the definition of a state equation and the
possibility to analyze behavioral and structural properties (del Foyo and Silva, 2003) where some promising results that
allow pursue some advances, introducing a higher level approach by adding a new class in the system: the token.

Making the token an object can solve two problems at the same time: providing distinguishable marks for the net by
introducing attributes to the tokens, what we will analyze in the next section.

3. A PROSPECTIVE RELATION BETWEEN OO-PETRI NETS AND HIGH LEVEL NETS

The original concern in the synthesis of nets evolve from the structured approach proposed in the 80’s by Miyagi et al
(1988) was revisited to provide the object-oriented synthesis as object nets or, in other words, a object description where
the objects have its behavior represented by processes described in Petri Nets. Naturally the challenge evolve to compose
a network of object nets and obtain a recursive approach. Several articles appear in the literature to cover one or other
approach and very few faced the problem of covering both. As in the development of classic Petri Nets, most of these
proposals were mixed with the commitment of attending a specific class of applications, and the need to develop a new
approach (or a hybrid one) were not so clear.

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

A representative work that integrates higher level nets - colored Petri Nets, in fact - with object orientation and with
the concern of representing the knowledge associated with the synthesis of the net was proposed by Bañares et al (2001).
Maier and Moldt (2001) also proposed the OCP-Net (Object Colored Petri) where a similar merging were envisaged, even
without the charge of representing direct knowledge. The hole of structure and hierarchy was clarified by Guerreiro et al
(2001) that proposed a modular approach over an object-based CPN (Colored Petri Net). A more sound approach to object
nets with a behavior described by Petri Nets was proposed in (Hong and Bae, 2001) but that still miss a system approach
to the object community, even if it is suited to represent multiagent systems. Finally Miyamoto (2005) present a survey
based on methods that try to superpose two different levels using object nets as tokens. Unfortunately that also make the
formalism necessary to describe the meta-model complex even if the not trivial link with the object nets behavior.

We claim that a recursive approach is easier and clear to those interested in the design of distributed system, indepen-
dently of the nature of the application, if requirements analysis, design rationales, workflow management in manufacturing
environments, business processes or communication between processes. That is what we call GHENeSys.

The proposal of GHENeSys is based on a unique recursive and integrated definition of a object oriented Petri Net,
were each component is an object net as well as the whole net. Composing the basic class definition we have not only the
box class (passive elements) and the activity class (dynamic elements) there is also a class token, to which we associate
only attributes. Therefore, there is no second level formalism and the overall schema is pretty close to a colored net.
The advantage is to have a complementary proposal that relies on the previous established formalism of colored nets,
conventional place transition nets and basic high level nets. Besides the object approach to the net is also present.

As a result, the design discipline reinforced by this approach is a systemic one, based on the dynamic relationship
among the composing elements instead of a static one. At beginning of the design process it is necessary to have what we
call a plan, that is, a general model of the the basic dynamic relations among the basic object classes. The remaining of
the process should come as a combination of refinement (using hierarchy and direct abstraction) and (single) inheritance,
what is a simple way to preserve the scope of the process.

There is also a need to integrate token flow with message passing, what is introduced by the introduction of special
passive elements belonging to the box class, called pseudo-box, combined with the use of gates. Thus, the persistent
marking of the pseudo-boxes is guaranteed by the gates, through which only information will flow.

In the next section we show GHENeSys definitions and derive the basic state equation. The class diagram is also
showed and all the implications of the integrated approach discussed in more detail.

4. THE GHENESYS PROPOSAL

In recent years has arisen an idea of an unified approach that could encompass all the available resources found within
the different Petri nets extensions which are necessary to deal with most, if not all, of discrete event systems(DES).
Despite the increasingly growing number of researchers in the field that considers that this kind of formalism is possible
and desirable, yet no practical tool has been developed in this direction.

The net called GHENeSys was designed and developed in DLab from ideas presented in (Miyagi, 1988), (Silva and
Miyagi, 1995), (Silva and Miyagi, 1996) (Silva, 1998), and finally formalized in (del Foyo, 2001). Initially, it was
conceived as an extended net with concepts of object-orientation, a mechanism of abstraction -through the definition of
hierarchy-, and synthesis -using a structured approach. GHENeSys have a great potential to become in that tool capable
of represent, in a unified way, Petri nets and their extensions, as well as the high level Petri nets.

4.1 GHENeSys Definition

At the current evolution stage, GHENeSys (General Enhanced Hierarchical Net System) can represent all the enhanced
nets cited in the literature. It was also modified to allow the representation of timed systems.

Definition 1 (GHENeSys). GHENeSys is a tuple G = (L,A, F,K,Π, C0, τ) where (L,A, F,K,Π) represents the
net structure, C0 is the set of tokens on the initial marking, and τ is a mapping function, that maps the time intervals of
each element of the net.

• L = B ∪ P , are the places, them can be named Boxes and PseudoBoxes (this can be enabling or inhibitors);

• A are the activities;

• F ⊆ (L×A→ N+) ∪ (A× L→ N+) is the flow relation;

• K : L→ N+ is the capacity function;

• Π : (B ∪A)→ 0, 1 is the function wich identifies the macro elements;

• C0 = {(l, σj)|l ∈ L, σj ∈ R+ |l| ≤ K(l)} is the set of tokens on the initial marking;

• τ : (B ∪A) −→ {Q+, Q+ ∪ {∞}} is a function that maps the time intervals of each element of the net.

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

The set of tokens is formed by the pairs (l, σj) where l ∈ L determines the place where the token is located and σj
is the clock wich measures the time that tokens remains on that place. This clock is updated everytime that a transition
happens and the clocks of all tokens are sincronized with a global clock. As there may be several tokens in one place, the
set of tokens is in fact a multi-set.

The function τ maps one time interval with each element of type Box or Activity. Don’t have any sense to put time
in pseudoboxes and tokens related to those kind of elements, because those are elements with constant marking, i.e. the
marking of pseudoboxes is not changed by the dynamics of the net1. The time intervals related to the net elements have
different semantics depending on the type of element to which they belong. For example, for boxes the time interval
represents the minimun or maximun amount of time that a token can remains in that element. For the activities, the time
interval have the same semantic that have in Merlin’s TPN transitions.

Time intervals are formed by their lower and upper limits. For each net element e ∈ B ∪A, the time intervals will be
set as [↓ e, ↑ e] with ↓ e ∈ Q+ and ↑ e ∈ Q+ ∪ {∞}.

The flow relationship F was also modified to allow weight in the arcs, like in place/transition nets and TPN. The rest
of definition items keep the same meaning they have in its original definition in (del Foyo, 2001).

4.2 GHENeSys as an OO-Petri Net

Besides the introduction of structure in the modeling process, the GHENeSys proposal also aims to summarize the
various possibilities of extend its formalism, using an object-oriented approach starting with the generic classes Place and
Activity.

As in other proposed works, the GHENeSys elements are objects, and tokens are passive objects (contains no methods).
The net represents the structure of the control system, while the tokens models the data structure of the system, but this
data do not appear in the transition firing rules and therefore do not change radically the formalism of the net, such as Pr/T
nets and coloured nets Petri nets (del Foyo, 2001).

The net elements that belong to a particular class, can have subnets connected to them. In case of elements which
represents structures that are widely known and frequently used in models, those subnets can be replaced by class methods.
An example of this case is the application of a discipline to manage the arrival of elements in a box, introducing a FIFO
approach, used in various extensions that distinguish tokens by tags, to model for example, flow of messages in networks
and the Internet. These methods represents some very well known behaviors and does not alter the properties of the net,
such as FIFO and FILO buffers. In this way is possible to reuse these definitions in various models, as well as to easily
expand these concepts through the mechanism of inheritance.

The objects attributes of GHENeSys can also be used to introduce the concept of time(discrete) in the net formalism
as we will show later.

GHENeSys was defined in the previous subsection as a tuple G = (L,A, F,K,Π, C0, τ), according to definition 1.
The sets L and A are represented by the classes Place and Activity respectively. Therefore, the elements of set L are all
objects of Place class and all the elements of set A are objects of Activity class. As in a system of classes, each one of
these objects inherits the properties and methods of the class to which they belong. In GHENeSys, both Place and Activity
classes have subclasses which allows to represent different elements, including compounds elements.

Therefore, GHENeSys is a cluster (a system composed by objects of different classes) and not a superclass as is stated
in other proposals. In this approach, there is also a unification of “Objects within a Petri net” and “Petri nets within
objects” trends, but without affecting the nets formalims. In this proposal the net is composed by objects that belongs
to two classes and each is related with objects of the opposite class, maintaining the bipartite characteristic of Petri nets.
These objects may contain subnets, recalling that those subnets must respects the definition of macro element.

Another advantage of the object orientation that is used in this proposal is the possibility of put in the methods, the
behavior of elements already known or treated in other models which characterizes the re-use. This can be done when
the structure and the net firing rule are respected. In principle, this can be seen as a limitation, and is indeed, but that
ensure the consistency of the formalism. Despite this limitation, which is considered essential, the introduction of these
elements constitutes a step forward because it allows to encapsulate and reuse elements and situations that usually appear
in models, and that helps to reduce the problem of state explosion, a common problem founded when medium and large
scale real-life system are modeled.

Another fundamental difference, in terms of systems analysis, of this proposal in relation to others, is the fact that for
any level of abstraction, we have a net structure to which it can be applied all the known elementary analysis techniques
of Petri nets.

The class diagram used in GHENeSys implementation is shown in figure 1.

1there are special cases where the marking of pseudoboxes is modified but this will be discused later.

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Figure 1. The GHENeSys Class Diagram

5. THE NEW FEATURES

Previus stages in GHENeSys evolution, treated time issues in Ramchandani’s way (Ramchandani, 1974). Taking into
consideration that most processes are not deterministic, like in real-time systems, such approach was modified. The
current temporal approach in GHENeSys let us represent non deterministic durations like in Merlin temporal approach
(Merlin and Faber, 1976). The approach used in GHENeSys allow the hierarchy levels representations even for passive
elements wich is a very useful issue to deal with complex systems.

5.1 States and State Transitions in GHENeSys

Before introducing the definitions of state and state transitions we will present the definition of multi-set that will be
used to represent the tokens in GHENeSys.

Definition 2 (Multi-set). A multi-set b, over a set A, its a function of A in N , b : A → N . If a ∈ A then b(a) is the
number of ocurrences of the element a on the multi-set b. AMS is the set of all multi-sets under A. The empty multi-set

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

is denoted by ∅.
Definition 3 (State). A state in net G is a pair s = (M,σ) where M is areachable marking in G and σ : A → Q+ is

a vector which contain a timer for each enabled activity by marking M related to the time in which activity became last
enabled. We denote as σ(a) the timer for activity a ∈ A.

Now that the definition of state was established we can define the enabling condition for an activity in GHENeSys.
Definition 4 (Enabling Condition). An activity a ∈ A is enabled at state s = (M,σ) with s ∈ R(s0), M = η(Ct)

and x ∈ R+ if the next conditions are satisfied:

∀li ∈ •a , (li, x)(Ct) ≥ n[li, a]; (1)
∀li ∈ a• , mi ≤ K(li)− n[a, li]; (2)

where n[li, a] is the weight of the arc which conect place li to activity a and n[a, li] is the weight of the arc which conect
activity a to place li. The set of all enabled activities in state s is denoted as enb(s).

Condition 1 checks the availability of tokens in pre-conditions of activity a and condition 2 checks the capacity
availability in post-conditions of a.

For an activity to fire, all tokens which enabled the activity must have its timers in zero. Then in order to determine if
such enabled activity can be fired or not the minimum enabled time must be determined.

Definition 5 (Minimum Enabled Time). The Minimum Enabled Time for an activity a is the minimum time elapsed
to reset the timers which enabled such activity. We denoted as νs the vector which contain the minimum enabled time for
each activity enabled in s.

νs : a→ R+ ∀a ∈ enb(s).
The firing condition can be obtained from the enabling condition, the static time interval and the value of the activity

timer for each enabled activity in s.
Definition 6 (Firing Condition). An activity a ∈ A can be fired in state s = (M,σ) iff:

a ∈ enb(s) ;
∀ai ∈ enb(s), ai 6= a , ↓ a+ νs(a)− σ(a) ≤↑ ai + νs(ai)− σ(ai)

The set of all activities firable in s is denoted by Υs, Υs ⊆ enb(s).

Definition 7 (State Transition) Firing activity a ∈ Υs lead to an state transition (M1, σ1)
a,δ−→ (M2, σ2) in time

δ ∈ R+, such as ↓ a+ νs(a)− σ1(a) ≤ δ ≤↑ ai + νs(ai)− σ1(ai), ∀ai ∈ enb(s1) trought the next modifications:

∀(li, xj) ∈ Ct1 , Ct1 = Ct1 \ {(li, xj)} ∪ {(li,max(0, xj − δ))};
∀li ∈ •a ∩B , Ct2 = Ct1 \ n[li, a]× {(li, 0)};
∀li ∈ a• ∩B , Ct2 = Ct1 ∪ n[a, li]× {(li, ↓ li)};

M2 = η(Ct2);
∀ak ∈ enb(s2) , σ2(ak) = 0;

∀ak ∈ enb(s1) ∩ enb(s2), ak 6= a , σ2(ak) = σ1 + δ − νs(ak);
σ = σ + δ;

s
a,δ−→ s′ define the set of states s′ reachables from state s firing activity a in time δ, i.e., |s′| = |Υs|.
Notice that for passive elements only one value of the time interval is used in Definition 7. That is because the created

tokens inhered the maximum or minimum time interval depending on the semantic previusly defined.

∀li ∈ L σli =

 ↓ b ∀li ∈ B when the minimal semantic is used
↑ b ∀li ∈ B when the maximal semantic is used

0 ∀li ∈ P

Because the time interval attached to passive elements in GHENeSys the hieralchical concept is preserved even for
the most abstracts levels. Using only one of the time interval limits allow either the best or worst temporal scenarios
determination at the time.

According to the identified semantics for firing activities in (Riviere et al, 2001), GHENeSys also led to choose between
the strong and weak semantics. The default semantics applyed in GHENeSys are the minimal and strong semantics.

Definition 7 estipules the actions to be execute to compute states transitions. Using such definitions the reachability
tree can be computed from some initial state.

5.2 A Small Example

In this section we use a small example in order to show the GHENeSys capabilities to compute the reachability graph
using the new time definitions. Figure 2 show an example of GHENeSys net.

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Figure 2. A small example of a GHENeSys net

The initial marking in such net is represented by the following multi-set,

C0 = {(1, 0.3), (2, 1.8), (3, 2.5), (3, 2.5), (3, 2.5), (6, 0)}

From that initial marking the enabled activities, the minimum enabled time and the firing interval for each firable activity
is computed. The results obtained are showed in the next table

enb(s0) = a2 a3 a4 a5

νs0 = 0.3 0.3 1.8 2.5
δ [2.3 4.8] [3.3 4.8] [7.8 9] [3.5 4.8]

Recalling that the initial marking vector is M0 = [1 1 3 0 0 1 0]T , and all activities timers are reseted σ0 = [0 0 0 0]T ,
firing the activity a2 with δ = 2.4 at s0 = (M0, σ0) will lead to the marking s1 = (M1, σ1). The state transition is
represented by:

(M0, σ0)
a2,2.4−→ (M1, σ1)

Following Definition 7, the reached state s1 will be:

M1 = [0 3 3 0 0 1 0]T

σ1 = [0.6 0]T , enb(s1) = {a4, a5}
C1 = {(2, 0), (2, 1.8), (2, 1.8), (3, 0.1), (3, 0.1), (3, 0.1), (6, 0)}
σ1 = [0.6 0]T

enb(s1) = {a4, a5}
Υs1 = {a5}

Note that the timer of activity a4, σ1(a4) is in 0.6 time units but even in such case, only activity a5 will be able to fire
because its latest firing time is less than the early firing time of a4 even considering σ1(a4).

6. CONCLUSIONS AND FURTHER WORK

In conclusion, we should remark that a real integration between the formalism of Petri Nets and object orientation
turns out in an expressive formal representation that encompass all the application domains modeled by Petri Nets plus
a set of new domains that demands a complete design process, including the requirements analysis. The possibility of
representing rationales would improve a lot and the possibility of including time would also amplify the range to include
real time applications.

The possibility of unifying the net in a general environment like GHENeSys would also open the possibilities to rep-
resent in the same environment single components, complex tools and integrate all of them in a suitable architecture to
compose the overall system. The composition between hierarchy with inheritance will allow the combination of structur-
ing and classification taking the advantages of both: an organized refinement procedure during design, and the reusability
and conservative evolution.

However, the lack of a consensus formalism for objects has a great impact in this association since it also multiplies the
possibilities for the association objects and Petri Nets. Object nets appears to be more attractive for some authors while

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

others, like the authors of this work, prefer a more direct recursive approach. The disadvantage of this last approach is that
the composed formalism must be rebuilt from the very beginning. On the other hand, the interpretation of components and
its relation would be facilitated. Also, a considerable part of the net formalism is preserved, even if some modifications
would be necessary. The test of the general GHENeSys tools has not been thoroughly done, specially in what concerns
the complexity of real applications. Therefore, partial results, including those with timed systems are very promising and
we believe that it will proved to be very useful in the area of requirements analysis, information systems, workflow, home
and building automation, scheduling, planning of huge systems and other similar systems.

For further work, besides the publishing of the of a tool with the development just showed in this work, we plan
introduce some algorithms for property analysis, specially invariant synchronic distance and formal verification proce-
dures. The treatment of rationales would also deserve attention since the modern design would require a good and sound
documentation.

Another direction for research is to use a tool like GHENeSys as an early process to synthesize the implementation of
PLC programs taking a Grafcet approach as an intermediary step. That could be done just with the classical part of the
unified environment but could open a new great domain of applications.

7. REFERENCES

Agha G. A., De Cindio F., Rozemberg G. (eds.), 2001 Concurrent Object-Oriented Programming and Petri Nets. Lecture
Notes in Computer Science, State of Art Survey, Springer.

Buchs D. and Guelfi N. 2000 “A formal specification framework for object-oriented distributed systems”. IEEE Trans.
Softw. Eng., 26(7):635–652.

del Foyo P. M. G. 2001 “Ghenesys: Uma rede estendida orientada a objetos para projeto de sistemas discretos”. Master’s
thesis, Escola Politecnica da Universidade de São Paulo.

del Foyo P. M. G. and Silva J. R. 2003 “Towards a unified view of petri nets and object oriented modeling”. ABCM
Symposium Series in Mechatronics, 1:518–524.

Guerrero D. S., de Figueiredo J. C. A. and Perkusich A. 2001 “An object-based modular cpn approach: Its application to
the specification of a cooperative editing environment”. Lecture Notes in Computer Science, pages 338–354.

Hong J. E. and Bae D. H. 2001 “High-level petri net for incremental analysis of object-oriented system requirements”.
IEE Proceedings of Software, 148:11–18, 2001.

Jensen K. 1994 Coloured Petri Nets: basic concepts, analysis methods and practical use. Springer Verlag, Berlin,
Germany.

Lakos C. A. 1995 “From coloured petri nets to object petri nets”. In Proceedings of the Application and Theory of Petri
Nets 1995, volume 935, pages 278–297. Springer-Verlag, Berlin, Germany.

Lakos C. A., Lamp J., Keen C., and Marriott B. 1995 “Modelling network protocols with object petri nets”. In Workshop
on Petri Nets Applied to Protocols, pages 31–42.

Lomazova I. A. and Schnoebelen Ph. 2000 “Some decidability results for nested petri nets”. In PSI ’99: Proceedings of
the Third International Andrei Ershov Memorial Conference on Perspectives of System Informatics, pages 208–220,
London, UK, Springer-Verlag.

Maier C. and Moldt D. 2001 “Object coloured petri nets - a formal technique for object oriented modelling”. Lecture
Notes in Computer Science, pages 406–427, 2001.

Merlin P. and Faber D. 1976 “Recoverability of communication protocols–implications of a theoretical study”. IEEE
Transactions on Communications [legacy, pre-1988], 24(9):1036–1043, Sep.

Miyagi P. E. 1988 “Control System Design, Analysis and Implementation of Discrete Event Production Systems by using
Mark Flow Graph”. PhD thesis, Tokyo Institute of Technology, Tokyo.

Miyamoto T. and Kumagai S. 2005 “A survey of object-oriented petri nets and analysis methods”. In IEICE Trans.
Fundamentals, Vol.E88-A, No.11.

Moldt D. and Valk R. 2000 “Object oriented petri nets in business process modeling”. In Business Process Management,
Models, Techniques, and Empirical Studies, pages 254–273, London, UK. Springer-Verlag.

Ramchandani C. 1974 “Analysis of asynchronous concurrent systems by timed petri nets”. Technical report, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA.

Riviere N., Valette R., Pradin-Chezalviel B. and Ups I. A. 2001 “Reachability and temporal conflicts in t-time petri nets”.
In: Proceedings of the 9th international Workshop on Petri Nets and Performance Models. Washington, DC, USA:
IEEE Computer Society, p. 229.

Rumbaugh J., Blaha M., Premerlani W., Eddy F. and Lorensen W. 1991 Object-oriented modeling and design. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

Santos E. A. and Silva J. R. 2004 “Appying petri nets to requirements validation”. ABCM Symposium Series, 1:508–517.
Silva J. R. 1998 “Interactive design of integrated systems”. In Luis Camarinha Matos and Hamideh Afsarmanesh, editors,

Intelligent Systems for Manufacturing. Kluwer Academic Pub., 1998.

Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Silva J. R. and Miyagi P. E. 1995 “PFS/MFG: A high level net for the modeling of discrete manufacturing systems”. In
Luis Camarinha Matos and Hamideh Afsarmanesh, editors, Balanced Automation Systems, Arquitectures and Design
Methods, pages 349–362. Chapman & Hall.

Silva J. R. and Miyagi P. E. 1996 “A formal approach to pfs/mfg: a petri net representation of discrete manufacturing
systems”. In Studies in Informatics and Control, Romenia, IC Publications.

Miyagi P. E.; Hasegawa K. and Takahashi K. 1988 “A programming language for discrete production systems based on
production flow schema and mark flow graph”. Transactions of SICE, (24):183–190.

Valk R. 2004 “Object petri nets: Using the nets-within-nets paradigm”. In Grzegorz Rozenberg (Eds.) Jorg Desel,
Wolfgang Reisig, editor, Lecture Notes in Computer Science, volume 3098 Springer-Verlag, June, pages 819–848.

Bañares J. A.; Muro-Medrano P. R.; Villarroel J. L. and Zarazaga F. J. 2001 “Kron: Knowledge engineering approach
based on the integration of cpns with objects”. Lecture Notes in Computer Science, pages 355–374.

8. Responsibility notice

The authors are the only responsible for the printed material included in this paper

