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Abstract. Permanent Downhole Gauges (PDG) for pressure and temperature are very common in oil and gas wells.
The data collected by the PDG are used for monitoring the well condition and reservoir performance and, additionally,
may provide new and complementary information for reservoir characterization. PDG record data at high sampling
rates. The computational analysis of this large volume of data requires a previous processing for the removal of
outliers and noise and for the reduction of the filtered data to a representative and tractable size. The Discrete Wavel et
Transform (DWT) and the Multiresolution analysis were used successfully for this purpose. The denoising process was
accomplished by the wavelet shrinkage method. This method consists in the decomposition of a signal in
approximation and detail coefficients through low pass and high pass filters, respectively. The coefficients are
moadified, according to a thresholding rule, to remove the noise before the reconstruction of the original signal. The
final result depends on the kind of wavelet and resolution level used for the decomposition process, the method used to
estimate the noise level present on the signal, and the rules used to modify the coefficients. In this paper, the
performance of different wavelet type decomposition, noise threshold estimators and thresholding rules was
investigated. Several combinations were tested on synthetic and actual data to establish a procedure that efficiently
removes the noise and preserves the sharp features, characteristic of changes in production or injection rates. In some
cases, high oscillations appeared near the signal discontinuities, particularly for the soft thresholding rule with the
universal threshold. The best results on suppressing the Gibbs-like artifacts were achieved by the combination of the
Daubechies wavelet with the Firm shrinkage rule and Minimax threshold. The selected method was proved effective
when applied to the denoising of actual PDG data.
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1. INTRODUCTION

Wellbore pressure is a very important source od daed in reservoir engineering to monitor resemnditions, to
select recovery schemes, and to forecast its peafioce. The changes in the reservoir pressure amacthristic of
reservoir properties themselves. Therefore, therveg properties can be inferred through comparisetween the
pressure response and a model, which can be uséddtdioe reservoir management. Transient testpartormed in
order to observe the pressure response correspptadflow rate changes during a time period.

Wells are equipped with PDG’s in order to monitoeliwbehavior in real time. This continuous pressure
measurement makes it possible to observe reserkiainges and to make operational adjusts, to awamdients and
improve the recovery.

Although the permanent downhole pressure gauge&s)Hbstallation was started in the 90’s, there alder
publications, which discuss PDG applications andefits. The topics discussed were its applicatmmptimize the
production, localize operational problems, resermadnitoring, its use in different well types aretovery processes,
information extraction for well control, its inskaion and reliability.

The PDG datesets are very large, it may contain millions of mw@aments, and it may provide more reservoir
information than the traditional transient presstests. A long-term data analysis reduces uncéytaim the
interpretation. Furthermore, this kind of data nséwpw how the reservoir properties change whiledfisi produced.
However, using this large amount of data is neidti In order to make possible a reliable intetatien it is necessary
to pre-process the data. This pre-processing, ceetpby seven steps, was suggested by Athichanagatn(2002).

This paper discusses just one of these steps:Di@& data denoising. The discrete wavétansform is a tool used
successfullyo remove noise from these kinds of data. The vedvalalysis applied to PDG data was reported byyman
authors including Kikani and He (1998), Athichanaget al. (2002), Ouyang and Kikani (2002) and Ribet al.
(2006). In Antoniadis et al. (2001here is a discussion about wavelet transform mgenparametric regression and a
review about wavelet literature related to datafihg.

Based in these previous studies, this work compheeperformance of different combinations of wavdéamilies,
thresholds and shrinkage rules, at different deawsitipn levels,for the denoising of PDG data. For this study,
synthetic data from numerical reservoir modelind antual PDG data were used.

The results were classified as best, intermediatkeveorst according to its performances. The conilaina of the
firm shrinkage rule with the minimax threshold ath@ hard shrinkage with the minimax and universa¢sholds
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showed the best results. In general, the Daubechiesmvelet at the last decomposition level presehés best
performance of all combinations tested. The Biagthwl wavelet showed heterogeneous behavior andvtinst
results.

2. MATHEMATICAL BACKGROUND ON WAVELET TRANSFORM

The wavelet transform has a wide range of apptcaiin signal investigation from different physigadienomena.
The most attractive features of wavelet transfosrarialyze signals are its ability to separate fiighuency contents
from low frequency components and to identify aodate signal discontinuities. In the petroleum pagiing
literature, this analysis has been applied in niiffgrent problems. One of these problems is thed#ng of pressure
data from permanent downhole gauges, to estimaszweir characteristics.

The basic form of the wavelef)(t)) is called thanother wavelet oranalyzing wavelet. The wavelet families are
building by manipulation of basic functions, whiolakes it more flexible. The first step stretched agueezes the
wavelet (dilation, represented by parameieand the other moves it along the time axis (ledim, represented by
parameteb). So, the wavelet transform of a sigrf(t), at scalea and locatiorb is defined as:

Wf(a,b) == [ 0w (F)dt, (@ 0) (1)

The wavelet analysis is associated with a scalimgtfon ¢ (t)). This function is a wavelet complementary
transform, represented by:

Cf(a,b) == [ f@¢ () dt, (@ 0) @)

Equations (1) and (2) are used to decompose tmalsig detailed components, using the wavelet foans (Eq.
(1)) and approximation components, using the sgatransform (Eq. (2)). So, the signal can be represl by
combining detail and approximation conteritkis process can be repeated several times, usingcaling coefficients
at one level as input to the next, so the signdeiomposed in many levels. Analyzing differenelsydifferent signal
features can be studied. This decomposition ieddlie pyramidal algorithm.

There are a large number of wavelet functions émegal applications. Choosing one for a particetady depends
on the nature of the signal and what physical phen@ or process is analyzed. In this paper, DaibgcSymmlet,
Coiflet and Biorthogonal wavelets were used.

Daubechies family is the most used in petroleumire@ging applications. The functions are orthogowih
compact support, they present a finite number ofdementary transform components:

e(x) = lim_,q, 17;(x) 3

andn, is determined by

m=V2EIyatmn_(x—n), 4)
whereq; are coefficients of the filter. The transform withyoid moments is obtained by:

P(©) = XD ay(-n+ Dey2x —n) . ®)

For example, fol = 1 the simplest wavelet, called the Haar wavelet(mitinuous and looks like a step function),
is obtained:

1, 0<t<1/2
Y)=1{-1, 1/2<t<1 . (6)
0, 1<t

Symmlet and Coiflet families, developed by DaubestiAddison, 2002), are functions with compact sup he
wavelet will be perfectly symmetric and anti-symrieeivhen the Biorthogonal wavelet families are ugaddison,
2002).

In this work the Daubechies wavelets of orders,14,26 and 8 were used. Additionally, Symmlet araifl€t
wavelet families with orders 2, 4, 6, 8 and 1, 24,35, respectively, and the biorthogonal splireeletsl3, 22, 26, 33,
35 were also applied for comparison purposes.
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3. DENOISING BY WAVELET THRESHOLDING

Denoising is a procedure used in a specific datéoseeduce the dispersion and fluctuation of @tues in order to
extract its more representative features. One@btst methods to denoise signals is the wavakeshblding method.
While most of denoising methods tend to smoothing sharp data features, the wavelet thresholdinthade
generally, preserve most of them.

To remove the noise of PDG data, the signal is ehposed using a wavelet procedure that follows tframidal
algorithm, where the signal is divided into approation and detail at each decomposition level, igkthnagorn,
2002). After decomposition, the detail signal cobldenoised by some thresholding method. DonoHalahnstone
(1994) introduced the hard and soft shrinkage rfdeshis application. When using the hard shrirkagle the detail
signals below a specific threshol) @re set to zero and the denoised signal is rémated using the smoothed data:

0, dig| =1
6f={ Il <2 )

dj e |dj x| > 2

The soft shrinkage rule, besides setting to zeeosifgnal less than, reduces\. from the signal value out of this
band:

0, x| < 2
5f = dj,k - A, dj,k > l . (8)
di + 4, |dje| < -2

Athichanagorn (2002) observed that the hard shgekeule is better than the soft on zones close at@ d
discontinuities. However, the hard rule is not ablsuppress some noise signals on continuouszdates, while soft
rule is able to. An alternative technique used tgoGnd Bruce (1997) to overcome the hard and $wihkage
limitations was the firm shrinkage rule

J 0, k| < A
Aa(|djk|=21)
Shiae = VSO =5 A <|di <4z ()

djjer |djie| > 2

Note that this method uses the hard and soft thiéisty principles, providing better results whermgared to
them. However, it is necessary to specify two thoéd values, which is a computational disadvantdgerefore, Gao
(1998) considered the garrote shrinkage rule

0, di| <2
56 = { 2 ldjul <2 (10)
dix — 2 /dig, |dj x| > 2

Tests with the garrote rule showed that it is betiban hard and soft rules and as good as firm, arig one
threshold value is necessary. In the same way,ands and Fan (2001) considered the SCAD ruleresged by

sgn(d]-,k) * maX(O, |d]-,k| — /1), |dj_k| <21
5/{% — (a—l)dj,k;il;l sgn(dj,k)‘ 21 < |dj,k| <al . (112)
d]"k, |d],k| > al

The threshold values used in the thresholding nustinoay be specified by several methodologies. Tést applied
is the universal threshold,

V=g 2log(n) , (12)

wheren is the number of points ardthe standard deviation of the signal noise. Theansal threshold removes most
of the signal noise, however, its utilization magosmooth sharp features of the signal, (OlsenNordtvedt, 2005).
The minimax threshold follows the same universéhgple and may be understood as its adjust. Thannaix
threshold values are smaller than the universaistiold, but both of them tend to assume high valliee minimax
threshold has been derived by Donoho and Johngt®@®) for soft shrinkage, by Bruce and Ga896) for hard
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shrinkage, by Gao and Bruce (1997) for firm shrgeaby Gao (1998) for garrote shrinkage and byatahLi (1999)
for SCAD. In this study the minimax threshold valueere calculated by logarithmic interpolation abulated values
published on the references cited.

Trying to obtain an optimum threshold value, Donalna Johnstone (1994) introduced the SURE schdraeuses
waveletcoefficients at each resolution leyelo choose a threshold valdg The idea is to use Stein’s unbiased risk
criterion (see Stein, 1981).

In this paper the results obtained from severallinations among shrinkage rules and threshold salwavelet
families, and decomposition levels are presentée. Main objective of the comparison is to find lblest technique for
denoising PDG data, preserving the sharp featusisctive of production rate changes.

4. RESULTS

Several tests were performed to investigate theidery methods performance. Three different flondele were
used in the study: Radial Homogeneous Infinite AgitiRadial Homogeneous Closed Square with Paréak®ation
and Injection Well in a Two Faults System (chameskrvoir). The reservoir and fluid properties addgmay be found
in Table 1. The data points were equally spacetihie with time step equal to 0.01 h. Figure 1 shohes pressure
behavior for each flow model. Synthetic noisy datae generated adding random noise with zero n@émetoriginal
data set at three different levels (0.02, 0.04@06 x 10kPa).

Different combinations of shrinkage rules, thresisohnd resolution levels were investigated. Tabkh@ws a
summary with the combinations tested. The wavedebthposition procedure with smooth padding at thgee was
applied in data sets of 2048, 16384 and 65536 foirgsts with these three different data sets prdvat its size does
not influence considerably the final result. Thealation level was chosen according to the maxinvatne between
the formulas proposed by Olsen and Nordtvedt (2@@8)Donoho and Johnstone (1994).

Table 1: Reservoir and fluid properties

Property Value
Original Pressuréx10kPa) 250
Reservoir TemperaturéQ) 80
Permeability §nD) 500
Net Pay () 50
Porosity 0.25
Oil Formation Volume Factonf/std m®) | 1.025
Qil Viscosity (cp) 5
Well Radius n) 0.108
Total Compressibility 1/10kPa) 1.4x10*

Table 2: Shrinkage rules and thresholds

Universal | SURE| Minimax
Soft X X X
Hard X X X
Firm X
Garrote X X
SCAD X X

As the models employed are large the tests weferpaed on signal sections. A moving window throufga time
axis was used, starting on the first time value tasting sub-sets. The size of the window was figadhe tests to
maintain a standard comparison between the results.

To determine the best combination for each caseetbomparison criteria were employed: the maximaiaoe of
the difference between the denoised and originghadi (error), the standard deviation of the errnd & visual
verification of the denoised signal. The last cide gives information about the Gibbs effect: sigoscillations, which
occurs at discontinuities’ neighborhood.

Observing the resolution level, we can verify théten it increases the difference between the algiignal and
denoised signal decreases in the continuous regigtis small improvements for high levels resolatitlowever, the
Gibbs effect exceeds the original noise level,ipaldrly when the soft shrinkage and the biorthajomavelets are
used. This can be verified on Fig. 2, where theotded signal shows high levels of oscillations n#wse signal
discontinuity.



Proceedings of COBEM 2009

20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM

November 15-20, 2009, Gramado, RS, Brazil

230~

500 1000 1500 2000 2500

N
N}
=)

Pressure [x10kPa]

500 1000 1500 2000 2500 3000

240 \ ! ! \
0

1000 2000 3000 4000 5000
Time [h]

Figure 1. Pressure signals generated by the @senaedels (upper: Radial Homogeneous Infinite Agtimiddle:

Radial Homogeneous Closed Square with Partial Peiaet, bottom: Injection Well in a Two Faults Ssist - channel
reservoir).
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Figure 2. Comparison between the original signaldigl Homogeneous Closed Square with Partial Petiet) and
the denoised signal using biorthogonal wavelet o2éeat decomposition level 6.
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The performances of each tested case are shovabten3, which present respectively the best (B intermediate
() and the worst (W) performances. The resultsevtbe same for each flow model used when DaubecBigamlet
and Coiflet wavelet were employed.

Heterogeneous behavior was verified when biorthabomvelets were used, presenting the worst regun hard
rule with SURE threshold was employed and bestteswith the garrote and SCAD rules with the unsadithreshold.
Figure 3 shows the difference between the bestanrdt results achieved with biorthogonal wavel&tse use of this
wavelet type is not advisable because it shows leigils of error and standard deviation.

The worst performance among all combinations wasiee when the soft shrinkage with the univerdaieshold
were employed: these combinations presented theesigerror and standard deviation values. The S@Ad garrote
shrinkage rules presented an intermediate perfarendor almost all threshold values. Finally, thestbeesults were
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reached using the hard shrinkage with minimax andeunsal threshold, and the firm shrinkage with imizx threshold.
Figures 4 and 5 show comparisons between the wodsbne of the best performances.
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Figure 3. Comparison between the original signaldigl Homogeneous Closed Square with Partial Petiet) and
the denoised signal using biorthogonal waveletoi@red) and 26 (yellow) at decomposition level 6

Table 3. Performance of the combinations tested.

Universal | SURE| Minimax
Soft W W W
Hard B I B
Firm B
Garrote | |
SCAD W I

Observing the wavelet decomposition type and itodgosition level, the best results were showrDiaanbechies
4 wavelet. After the best combinations were fouthdy were employed in an actual data set and cadday visual
inspection. Before this process, an outlier dedectioutine was used to remove isolated outliers arstibsampling
routine distributed the data points equally spandiime with time step equal to 10 seconds. Thewes applied on the
original data using a time window, as explainecbef

Applying the best combinations in the data setjais observed that in some parts, specifically andiown regions,
the noise as not removed efficiently (see Fig.T8)s effect could be attributed to the differenatvieen the synthetic
and real signals. In the first case, random noisle zero mean was added to the original data whiléhe actual PDG
data the noise possibly does not present zero mean.

In build up regions, noise was satisfactorily reemhvas it is shown in Fig. 7, where the denoisirgess preserved
the sharp features of the data.

5. CONCLUSIONS

In order to determine a reliable technique for de&ng PDG data, several parameters combination €leav
decomposition type, shrinkage rule and thresholdejavere studied. Furthermore, the influence eséhcombinations
added to the choice of the decomposition level wasstigated.

The tests results were classified according tor theiformance as best, intermediate and worst. best results
were reached using firm shrinkage rule and minirttaeshold and hard shrinkage with minimax and usi&ke
threshold, for Daubechies, Symmlet e Coiflet watviglpes. The Biorthogonal wavelet presented thestoehavior, its
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use is not advisable. The Daubechies wavelet shdweser behavior than other wavelet types, paditylat order

four.

The selected methods presented satisfactory restiks applied to the denoising of actual PDG dathdiild up
regions. However, in drawdown regions of the datat¢hosen methods did not remove the noise assitewpected.

Probably it happened due to the nature of the redsied in

the synthetic data be different of thathe actual data. In

the future other tests will be performed to invgati the influence of the noise type on the dengiprocess.
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Figure 4. Comparison between the original signaldigl Homogeneous Closed Square with Partial Patiat) and
the denoised signal using Daubechies wavelet @dexd) and 4 (yellow) at decomposition level 6.
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Figure 5. Comparison between the original signgk€tion well in a two faults system (channel regs@)) and the
denoised signal using symmlet wavelet order 2 (aed)4 (yellow) at decomposition level 6.
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Figure 6. Comparison between actual data and thstwesults obtained for the denoised data usingoBehies
wavelet order 4 at decomposition level 6.
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Figure 7. Comparison between the actual data asdtseobtained using Daubechies wavelet orderdéedmposition
level 6.
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