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Abstract. Immersed boundary methods have been used as powerful tools for numeric simulation of flow around 

complex and moving geometries. Even though the immersed method idea is not difficult to understand, its numerical 

implementation is not simple. Furthermore, numerical results are significantly influenced by different aspects related 

to the Navier-Stokes equation solver, such as precision order for the time scheme and the advective terms treatment 

scheme. In the present work, an immersed boundary method based on the virtual physical model has been implemented 

in an in-house 2D computational code. A numerical study of the flow past an oscillating cylinder placed in an infinite 

medium has been performed. The influence exerted by several parameters on the results have been investigated; such 

as the size of the Eulerian and Lagrangian meshes, size of the computational domain and the different ways adopted to 

impose movement onto the boundaries. The results are compared with data found in the literature and indicate that 

low precision order of the numerical time scheme can be responsible for the huge sensitivity of the code. 

 

Keywords: Immersed Boundary Method, Virtual Physical Model, Moving cylinder. 

 

1. INTRODUCTION 
 

Most of flow systems typically founded in engineering or biological applications involve complex geometries 

with moving boundaries. These cause severe difficulties in finding accurate results by means of the numerical 

solution of the Navier-Stokes equations. Accurate solutions need a correct representation of the physical problem 

and, consequently, it is necessary to choose a numerical model able to deal with the complexity existing in the real 

situation.  

Different numerical methodologies have been proposed in the last decades to treat this class of problems. In 

this context, the Immersed Boundary Method, conceived by Peskin (1977), is particularly suited to represent fluid 

motion inside geometrically arbitrary systems. In brief, Peskin's methodology allows the representation of a body 

immersed in a passing flow by adding a forcing term to the Navier-Stokes equations. Due to this term, a simple 
Cartesian mesh could be used even for moving boundaries, just by evaluating the force properly.  

The first model developed by Peskin had the focus on the flow passing through a cardiac valve. Since then, 

several other researchers have improved the original model, changing in essence the way the forcing term is 

evaluated. According to Mittal and Iaccarino (2005), the different variants of the immersed boundary method 

can be classified in two major categories: the discrete forcing methods and the continuous forcing methods. In 

the first one, the force is calculated after the domain discretization, and added to the cells that compose the 

boundary between the body and the flow. To achieve a better definition of the geometry these methods may 

need some modifications in the mesh patters around the body but that implies an increase in the computational 

costs. As examples one can see the model of Verzicco et al. (2000) for turbulent flow inside an engine, two-

dimensional flows as showed in Balaras (2004), and many others. In the other hand, the continuous forcing 

approach, evaluates the force before the domain discretization, using a certain function to distribute the force 
effects through the neighboring cells. These methods have the advantage of using the same mesh without any 

modifications of the boundaries. They have been used by several researchers like in Fauci and 

McDonald (1994) to simulate the locomotion of aquatic animals, and by Unverdi and Tryggvason (1992) for 

bubble dynamics and many others.  

By means of the Physical Virtual Model, initially proposed by Lima e Silva (2002), the force calculation is 

based on the physical interaction between the body and the flow. It is based in the application of the momentum 

conservation equations in the fluid volumes centered on the Lagrangian points interface components. In this 

manner the non-slip condition is imposed directly at the interface. For these reasons, the Physical Virtual Model is 

a very attractive numerical approach, using only one simple Eulerian mesh during the whole simulation, while the 

body is represented by Lagrangian points. These points do not need to conform to the mesh, which allows the 

representation of any moving and complex geometry. Basically, a force is added to the Navier-Stokes equations, 

in the specific location of the Lagrangian points, and distributed to the neighboring cells, as explained in the 
following section. 
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In the present work, the flow past a moving cylinder is simulated using the Physic Virtual Model. As a moving 

geometry, the Immersed Boundary Method selected seems to be adequate for this case, incurring a relatively low 

computational cost.  

 

2. MATHEMATICAL FORMULATION 
 

The incompressible isothermal flow of a Newtonian fluid is governed by mass conservation and Navier-Stokes 

equations. For a Cartesian 2D domain, these equations can be written as: 
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where ρ  is the fluid density, µ  the kinematic viscosity, p  the pressure, 
m

u  and 
n

u  are the velocity vector 

components. 

To represent the immersed body numerically in the flow, one can add a forcing term to the Navier-Stokes equations 

given by 
m

F . 
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When properly evaluated, the forcing term causes the flow to go around moving or complex interfaces represented 

by the Lagrangian mesh, without the need to impose any local boundary condition.  

According to Lima e Silva (2002), the Physical Virtual Model represents this force as a combination of an 
acceleration force, an inertial force, a pressure force and a viscous force. Respectively: 
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where Xk are the Lagrangian points locations, evaluated at the right location of the Lagrangian points, by interpolation 

of the velocity and pressure fields.  

 

3. THE COMPUTATIONAL PROGRAM 
 

An in-house program was used as a base code for implementing the immersed boundary method desired in the 

present work. The code is a 2D solver for the Navier-Stokes equations in Cartesian coordinates by Finite Volume 

developed by Campregher (2002). The user can chose between SIMPLE and SIMPLEC for the velocity couple, and 

Upwind, Second Order Upwind, Central Difference, Power Law and Quick, for advective terms treatment. Also for 
turbulent flows, there were chosen the LES and Smagorinsky subgrid model. The code was written in FORTRAN 95 

organized and prepared to receive new routines for implementing different methods in the base code. 

Bornschlegell (2008) added new modules to make possible the use of the Virtual Physical Model (Lima e Silva, 2002) 

in the Immersed Boundary Method.  

For simulating the cylinder in the present work, let consider it formed with points where a force will be added. 
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These points are the Lagrangian mesh and it is immersed in another mesh, a Cartesian and regular one, as shown in 

Fig. 1. So, for the domain, there is a uniform velocity profile at the entrance, and null derivatives at the exit. The upper 

and lower boundary conditions can be chosen either as non-slip to simulate a channel or symmetry for simulating an 

infinite domain.  

 

 

 

 

 

 

 

 

 

Figure 1: Computational domain and boundary conditions. 

 

 

4. RESULTS AND DISCUTION 
 

First simulations were of a stationary cylinder in an infinite domain. To search for the lowest computational cost, 

several meshes were tested and the best configurations are illustrated in Fig. 2, where the Eulerian mesh is uniform only 

in the neighborhood of the cylinder (2D x 2D). For the rest of the domain, the mesh is not uniform, and its cells become 
bigger as they are near the domain boundary. To avoid numerical problems, the mesh expansion rate is limited to 3%.  

 

 
Figure 2: Mesh and computational domain used for stationary non confined cylinder. 

 
According to the literature, the rate between the Lagrangian and the Eulerian meshes must be close to 1.0. A 

coarse Lagrangian mesh causes a bad representation of the immersed boundaries, while an unnecessary refinement 

increases the computational costs. Due to this fact, the mesh configuration must be carefully chosen in order to 

assure physically consistent results, and to save CPU time and memory space. The characteristics of the meshes used 

in the present simulations are detailed in the Tab. 1. 
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Table 1: Mesh characteristics. 

 

Mesh 

Amount of 
Lagrangian 

points 
Dimensions Amount of volumes Expansion ratio 

  XU XD Y X x Y X1 X2 Y1 X1 X2 Y1 

M1 32 7D 16D 15D 135 x   90 35 80 35 3.0% 1.5% 3.0% 

M2 64 7D 16D 15D 210 x 144 52 118 52 3.0% 1.5% 3.0% 

M3 64 7D 16D 21D 210 x 144 52 118 62 3.0% 1.5% 3.0% 

M4 64 10D 16D 21D 215 x 164 62 113 62 3.0% 1.5% 3.0% 

M5 64 15D 16D 15D 263 x 144 110 113 52 1.5% 1.5% 3.0% 

M6 64 15D 16D 21D 263 x 164 110 113 62 1.5% 1.5% 3.0% 

M7 128 7D 16D 15D 308 x 226 73 155 73 3.0% 1.5% 3.0% 

 

 

For a Reynolds number around 20, the mesh convergence was verified and different schemes were tested for 

advective terms. The results are presented in Tab. 2. CD is the drag coefficient, CL is the lift coefficient, and LW/D is the 

ratio between the recirculation bubble length and the cylinder diameter.  
 

 

Table 2: Non-dimensional parameters for diverse mesh sizes and interpolative schemes. 

 

Mesh Scheme / Authors CD CL LW/D 

M1 

CDS 2.83 1.08 10-4 1.19 

POWER-LAW 2.44 8.32 10-6 1.19 

QUICK 2.52 3.88 10-2 1.19 

UDS 2.57 1.01 10-4 1.19 

M2 

CDS 2.41 1.47 10-4 1.05 

POWER-LAW 2.32 8.78 10-5 1.10 

QUICK 2.38 2.20 10-2 1.10 

UDS 2.40 1.44 10-4 1.05 

M7 

CDS 2.32 5.11 10-5 1.01 

POWER-LAW 2.28 2.19 10-5 1.01 

QUICK 2.31 1.20 10-2  1.01 

UDS 2.32 5.13 10-5 1.01 

Park et al. (1998) 2.01 - - 

Dennis and Chang (1970) 2.05 - - 

Su et al. (2007) 2.20 - - 

Tritton (1959) 2.22 - - 

Coutanceau and Bouard (1977) - - 1.00 

 

 

For the drag coefficients, the results are about 2.7% and 40.7% higher than those reported by others authors. One can 

note that for a given interpolation scheme, CD coefficients results become better with a smaller mesh size. This same 
behavior can be observed for the recirculation bubble length. Results for the lift coefficients, CL are near zero, but not null, 

as they should to be, and the QUICK scheme produced the largest difference when compared to the other schemes.  

For a Reynolds number around 200, utilizing CDS, some qualitative results can be visualized in Fig. 3 and 

quantitatively compared in Tab. 3 with data from other authors. For this case, the calculated Strouhal number is 

St = 0.1623. In Fig. 4 one can note this value is close to the experimental results obtained by Roshko (1954) and 

Lindquist et al. (1999). 

As it can be seen in Tab. 3, for moderate Reynolds number of about 200, the lift coefficient results are acceptable. 

But the values for the drag coefficient are about 40% lower than the smallest founded in the literature. The results 

deteriorate with an increase in the Reynolds number. 
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(a) Góis (2007). 

 
(b) Present work. 

Figure 3: Isovorticity contours for a stationary non confined cylinder at Re = 200. 

 

 
Table 3: Non-dimensional parameters CD and CL for Reynolds number around 200. 

 

Authors CD CL 

Liu et al. (1998) 1.17 to 1.58 0.5 to 0.69 

Góis (2007) 1.39 0.63 

Present work 0.49 0.61 

 

 

 
Re 

 

Figure 4: Strouhal x Reynolds relationship for a circular cylinder. 
 

Next simulations consist in the flow around an oscillating cylinder in an infinite domain. The oscillating movement, 

in the x direction is given by  

 

cx = cx0 + A F cos (t) (9) 
 

where cx is the position of the center of the cylinder, cx0 is the position of the center of the cylinder in the beginning, A 

is the cylinder oscillation amplitude, and F is the ratio between the cylinder oscillating frequency and the natural vortex 

shedding frequency.  

Figure 5 shows the results for F = 0.55 and A = 0.1, compared to those of Góis (2007). One can note only a small 

difference in the lift coefficient values. The maximum for the present work is about 0.7 while for the results of Góis (2007) 

the maximum is about 0.8. The first seconds of simulation are not shown because the results are not realistic. This 

happened due to the fact the program evaluates the immersed boundary force only once, and then runs until the next time 

step. This fact allows the code to run faster, but giving completely unrealistic results during the first seconds.  

St 

Roshko (1954) 

Lindquist et al.(1999) 

Present work 
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When dealing with moving boundaries, one important aspect is determining the waiting time before moving the 

boundary. If the cylinder starts to oscillate in the firsts time steps of the simulation, probably, the program will diverge. 

It is necessary to wait the first seconds with the immersed boundary stationary, to avoid using physically inconsistent 

results.  

The waiting time and the different implementation of the immersed boundary method used are probably responsible 

for the small difference in the frequency between both results.  

 

 
t 

 

Figure 5: Oscillating cylinder with A = 0.1, F = 0.55 and Re = 200. 
 

 

Figure 6 shows similar results for A = 0.1, F = 2.2 and Re = 200. The lift coefficients also agree with those in the 

literature.  

 

 
t 

 
Figure 6: Lift coefficients for A = 0.1, F = 2.2, and Re = 200. 

 

Introducing a tangential velocity in the Lagrangian points, a rotational movement is given to the cylinder. Tests were 

made for Re = 60 and several specific accelerations ranging 0 ≤ α ≤ 1.8. For this case, even thought the flow is still 
laminar, the lilt and drag coefficients are alternated due to the periodic vortex shedding. The simulations used the mesh 

M6 and the Power-Law for advective terms treatment. Figure 7 shows results for stream lines and pressure fields for a 

stationary cylinder (α = 0) and a rotational cylinder (α = 1.4). The moving cylinder presents deformed and non 
symmetric stream lines outside the cylinder, and inside the cylinder, the flow starts to rotate like a rigid body. For a 

stationary cylinder, the highest pressures were located at the stagnation point, however, for a rotational cylinder, the 

high pressures move to the bottom for the cylinder with counterclockwise rotation, generating an additional lift force. 
Using the non-slip conditions, the flow inside a channel can be simulated and the blockage effects in the flow past 

the cylinder can be verified.  

The fluid flow inside a channel is governed by the Reynolds number and the blockage ratio, here defined as 

λ = H/D, where H is the distance between the walls and D the diameter of the cylinder. Figure 8 shows a diagram for 
vorticity, stream lines and the length of the recirculation bubble LW (in meters) versus time t (in seconds), in a channel 

with λ = 1.9 and Re = 54. The flow becomes unsteady after 50 s of simulation. Comparing the present results with those 

■ Góis (2007) 

■ Present work 
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■ Present work 
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found in the literature, the unconfined flow over a cylinder, for Re = 54, presents periodic vortex shedding, while with a 

blockage ratio λ = 1.9, the flow becomes unsteady. According to the results of Chakraborty (2004), the force applied to 
the flow by the walls, is responsible for the enlargement of the bubble and a delay in the vortex shedding. 

 

  

(a) Stream lines, α = 0. (b) Pressure fields, α = 0. 
 

 

 

 
(c) Stream lines, α = 1.4. (d) Pressure fields, α = 1.4. 

 

Figure 7: Rotational cylinder comparing results.  
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Figure 8: Flow around a confined cylinder with λ = 1.9 and Re = 54. 
 

Increasing the Reynolds number to Re = 100 and keeping the same blockage ratio λ = 1.9, Fig. 9 shows the flow 
time evolution. The flow remains steady until t = 320, when the two halves of the bubble start to increase their sizes and 

eventually splitting, resulting in periodic vortex shedding.  

LW 
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t = 300 s t = 550 s 

  
t =552.5 s t = 557 s 

 

Figure 9: Flow around a confined cylinder with λ = 1.9 and Re = 100. 
 

With a further increase in the Reynolds number, Re = 200, the periodic vortex shedding starts early at about t = 70 s, 

as can be seen in Fig. 10. A non confined cylinder, for a Re = 200, presents a maximum lift coefficient of 0.61, as seen 

in Tab. 3. The diameter of the vortex is bigger for non confined cylinders. The drag coefficient increases due to the 

walls and the lift coefficient remains almost the same, in agreement with the literature.  

 

 

  
t = 50 s t = 75 s 

  
t =87.5 s t = 100 s 

 

Figure 10: Flow around a confined cylinder with λ = 1.9 and Re = 200. 
 

3. CONCLUSION 
 

The present work is the first step in a long process of improving the Physical Virtual Model which will eventually 

make it suitable for simulating more complex and moving geometries. Many modifications still are still needed in order 

to give more accurate results. The low order discretization may be responsible for some of the discrepancies with the 

literature, and in some special cases, the appearance of numerical instabilities. One important next step would be the 

code parallelization and the use of other methods like the factional steps method.  
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