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Abstract. The purpose of this assignment is to show the large-eddy simulation of driven-cavity flow results. In this  
simulation a finite volume code was used, which is based on a fourth order central difference schema to spatial  
advective and to diffusive terms and a second order to pressure terms. A second order, Adams-Bashfort schema, was 
used for the temporal discretization. Simulations were accomplished to Reynolds number 3200, 10000 and 25000. 
The first two Reynolds numbers show the main velocity and the fluctuation profile agreeing with experimental and 
numerical literature results. Like Taylor-Görtler structure was pointed out in all cases and transversal structures  
flow was found for Reynolds number 10,000.
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1. INTRODUÇÃO

The driven cavity flow has attracted the interest of researchers since the mid-twentieth century. This can be proven 
referring to Burgraff (1966),  who is mentioned by several authors as one of the pioneers in studying this problem 
numerically, and to Pan and Acrivos (1967), who studied numerically and experimentally. In the latter, the authors 
compare their results with those obtained by Dean and Montagons (1949) and Moffat (1964).  Furthermore, in recent 
works, Sheu and Tsai (2002) has studied numerically the flow in a cubical cavity for Reynolds number 1000, Migeon et  
al. (2003) has performed experiments with the same configuration, and Peng et al. (2003) numerically has studied the 
transition from laminar to chaotic two-dimensional flow, showing that this geometry still attracts great interest.

Some factors have contributed to this interest. The regular geometry and the unambiguously boundary conditions 
make this problem an ideal case for numerical method testing (Prasad and Koseff, 1989) and (Sheu and Tsai, 2002). 
This flow provides the opportunity to study the stationary vortex development and a wide range of phenomena that 
occurs around this, such as secondary vortices, corner vortices and like Taylor-Görtler vortices. Finally, this flow is an 
idealization  of  various  environmental,  geophysics,  industrial  (Freitas  and  Street,  1988)  and  biomedical  problems 
(Migeon et al., 2003). A practical applications of the lid driven-cavity flow is the deposition process of liquid films in a 
surface (Aidum et al. 1991). Another application is the flow within the casting cavities used for the microcrystalline 
material manufacture (Shankar and Deshpande, 2000). This flow is also an idealization of  many practical flows, such 
as “flow over cutouts and repeat slots an the walls of heat exchangers or on the surface of aircraft bodies” (Prasad and 
Koseff, 1989).

Although  the  great  initial  interest  in  this  flow,  the  details  of  this  topology  alone  had  been  disclosed  slowly 
throughout the last the four decades, above all, recent evolutions of experimental techniques, computer developments 
and the most efficient numerical methodologies were used. 

A critical point for the modern engineering development and for the physics of the turbulent flow understanding is 
the analysis of the temporal evolution and the flow topology. In this direction, the perception of the flow details, the 
numerical simulations are more efficient than the experimental measurements, for example, the confirmation of the 
lateral vortices gotten in laboratory by Koseff et al. (1983) (Chiang et al., 1997). In such a way, the current assignment 
goal is to analyze the transient structures in lid driven cavity flow in cubical with Reynolds number 3,500, 10,000 and 
25.000. Because there are experimental and numerical results with which comparisons can be made for validation of the 
methods and its implementations, the Reynolds numbers 3,500 and 10,000 were chosen. The Reynolds number 25,000 
was chosen by not belonging to the literature yet, and had the existence of the MFLab (Laboratório de Mecânica dos 
Fluidos) in UFU (Universidade Federal de Uberlândia) that aims at simulation the higher Reynolds numbers.

Beyond the Reynolds number, two other parameters characterize the driven cavity flow problem, the aspect ratio 
and the spanwise aspect ratio. The aspect ratio ( R ) is the reason between the height and the length, noticed as H : L . 
The spanwise aspect ratio ( SAR ) is the reason between width and the length, noticed as W : L .

The cubical lid driven-cavity had been studied experimentally by Prasad and Koseff (1989) and numerically by 
Perng and Street (1989),  Deshpande and Milton (1998),  Hassan and Barsamian (2001),  Sheu and Tsai  (2002) and 
Padillla et al. (2005). It is important to highlight the work of Prasad and Koseff (1989) they are boarded numerically 
and experimentally values of SAR  1:1 and 1:2. This last one studied numerically by Zang et al. (1993).

In the lid driven-cavity, Aidum et al. (1991) affirm that the flow remains stationary until Reynolds number 1,300, 
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when the transition occurs for the transient regimen. The laminar flow remains until Reynolds number between 6.000 
and 8.000, when the transition to turbulence begins in some cavity regions. With Reynolds number 10,000 the regimen 
is already completely turbulent.

The works of Sheu and Tsai (2002) and Migeon et al. (2003) analyze the low Reynolds numbers stationary flow. 
The transition process to the transient flow, but still laminar, is studied by Aidum et al. (1991) and Chiang et al. (1998). 
Laminar to turbulent flow transition had been studied by Koseff and Street (1984 ).

Among the studies of laminar and turbulent flow are distinguished carried through by Prasad and Koseff (1989), 
Perng and Street (1989) and Deshpande and Milton (1998). The first is an experimental analysis of the flow and the 
others are numerical analysis of the cases treated in the first one. They had been considered Reynolds number 3,200, to 
laminar flow, and the 10,000, for the turbulent case.

The turbulence is present in an enormous variety of phenomena. In fluid flow it appears entirely when the governing 
parameters, as the Reynolds number, becomes enough high to destabilize it.  This is basically the natural flow and 
practical applications. The knowledge of these phenomena can be applied to the industrial equipment projects. As in 
most effective control of heat exchanges, in improvement of fluid mixture performances, in reduction of drag and the 
increase of the security of bodies in movement, as they are cars and aircrafts. They can still be used in the analysis of 
atmospheric phenomena, influencing the way man relates to nature, predicting weather phenomena more effectively, 
such as droughts, floods and cyclones, as well as, in the good time periods, increasing the possibility of social planning.

Although all these possibilities of uses and advances in turbulent flow modeling, there is still a tool that can solve 
any flow type, which has extremely complex features in each one of them, either one individually or together. Prodigy 
is still strongly dependent on a previous flow analysis to obtain a coherent model (Bradshaw, 1997).

The Navier-Stokes equation satisfactorily represents all Newtonian fluid flow phenomena, with not considering the 
flow type. However numerical solution expectations of all  wide ranges of turbulent scales do not exist. Numerical 
simulations of this type had already been accomplished for moderate values of Reynolds number. These are called 
Direct Numerical Simulations (DNS). However, as the scale range grows this becomes impracticable, due to the mesh 
refinement requirement that must cover all scales.

One of the solution proposals for this problem is the use of the Large Eddy Simulation (LES). This methodology, a 
proposal initially for Smagorinsky (1963), has the goal of dividing the flow scales. The scales that can be captured by 
the mesh are numerically solved, and the fewer scales whose characteristic mesh size (subgrid scales) are modeled in 
such a way that the energy that would be wasted by them is wasted in an artificial way by the turbulence model. This 
model is called subgrid model and one of its characteristics must be simplicity.

The first and most used one of the subgrid models is the Smagorinsky model  (Lesieur et al., 2005). This model is 
based on the small  scales isotropy, and on the balance hypothesis,  according to which the production of turbulent 
kinetic energy is equally wasted. Later, Germano et al. (1991) he considered a model, in which, if he applies a filter in 
the determined field to get information in the transferring of energy in the intermediate scales between the characteristic 
size of this filter and the size of the mesh. With this information, the transferring of energy to the subgrid scales is 
adjusted to the model. By doing so, it assumes that the characteristics of the transference in the two levels are the same 
ones. This model later was modified by Lilly (1992)

 
2. MATHEMATICAL MODELS

The current assignment uses primitive variables, three-dimensional equations for incompressible constant property 
flow to model lid driven-cavity flow. the mass conservation equation and the Navier-Stokes incompressible flow with 
constant viscosity equations, they result of the application of the Newton's Second Law to Eulerian referential and of 
Stokes relation for the proportionality enter viscous stress to fluid deformation (White, 2005).

2.1. Filtered Navier-Stokes equations

The Reynolds equations are average of the Navier-Stokes equation. However, a filtered form of the equation is used 
in the Large-Eddy Simulation. A filter  G  is defined in such a way that any variable    is given by the addition of 
filtered component   and one floating component l ,

x=x 
l
x .  (1)

where x  is the position vector. The filtered component is gotten by the application of this filter to the variable,

 xo=∫x G x−xodx .  (2)

Applying this filter to the mass conservation equation it does not have alter its format. However, in the Navier-
Stokes equation a difference due to the not linear term appears,
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The appearance of the derivative of the subgrid tensor ij  is noticed:

i j=ui u j−ui u j .  (4)

This tensor traditionally is placed next to the diffusive term to call attention to the turbulence in the diffusivity increase, 
in case of momentum.

2.2. Turbulence models

Boussinesq (1877) proposed the subgrid tensor in the same way that Stokes viscous stressed his model. By doing so, 
he used the concept of turbulent viscosity in boundary layer on an infinite plain plate. Kolmogorov (1942) considered a 
generalized form Boussinesq's hypothesis and this has been the form used until current times,

i j=−2t S i j
2
3
i ji j ,  (5)

where t  is the turbulent viscosity and S ij  is the deformation tensor, it given by:

S i j=
1
2  ∂ui

∂ x j


∂u j

∂ xi
 .  (6)

In such a way it is:

i j−
2
3
i ji j=−t  ∂ui∂ x j


∂u j
∂ x i  .  (7)

Note the left side of the equation will count only to the anisotropic part of the subgrid tensor.

2.2.1. Smagorinsky's Model

Smagorinsky, following the idea of the Prandtl's mixture length model  (Lesieur et al., 2005), considered a subgrid 
model in which turbulent viscosity is proportional to the mesh characteristic length,  and to a characteristic subgrid 
velocity. The mesh characteristic length is an obvious choice, the characteristic velocity must be related to small scales 
velocities, it is of velocity variation order on a mesh element. By proportionality constantly adding it, gets to a final 
expression for turbulent viscosity,

t=C s
2
2S i j S i j ,  (8)

where CS  is the Smagorinsky's constant.
The Smagorinsky's constant value can be analytically calculated (Lesieur, 1997) and its value is 0,18. This value is a 

success  for  isotropic  turbulence,  as  it  was  expected  to  be,  since  isotropy  is  one  of  the  model  assumptions.  For 
non-isotropic flow, as mixing layers, this value must be reduced by the half as suggested by Ferziger (1993). The same 
author suggests that this reduction may be due to energy inverse cascade. Flowing near the wall in this model fails, 
because there are large deformations in these regions, therefore high values of turbulent viscosity. However these values 
must be low, since the turbulence near the wall decreases.

2.2.2. Germano's dynamic model

The dynamic model proposed by Germano et al. (1991) and modified for Lilly (1992) suggests the dynamic form of 
subgrid model adjustment, varying in space and time. An additional filter is used for this, the test filter, with a larger 
characteristic size than the mesh characteristic size. The model uses the concept of similarity scales, that is, it assumes 
that the lesser scales captured for the solution and the biggest subgrid scales have similar structures. Thus, the velocity 
field is filtered and the information is used to calculate turbulent viscosity to be used in the solution.

Using Smagorinsky's model as subgrid model, the model dynamically adjusts the proportionality value between the 
turbulent viscosity and the deformation tensor module. In this case, the coefficient is given by:
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C=
1
2

Li j M i j

M i j M i j

,  (9)

where

Li j=ui u j−ui
u j .  (10)

and

M i j=
2∣S∣Si j−2∣S∣S i j .  (11)

Note the filter test notation with a hat, for example   is the test filter characteristic size. The tensors Lij  and M ij  can 
explicitly be calculated, since the values in the equations are all known.

Padilla (2004) made a careful study on test filters used for the calculating the dynamic proportionality coefficient. In 
the current assignment, the weight of the filter used was 0.5 for the filtered variable.

3. NUMERICAL MODEL

For the current assignment a finite volume of computational code for incompressible constant property Navier-
Stokes equation solution was developed. A totally explicit second order Adams-Bashforth method was used for both, 
advective and diffusive terms, a velocity fourth order central differs and pressures according to space discretization. The 
Germano's dynamics and Smagorinsky subgrid models were also implemented.

3.1. Time discretization

In this assignment the explicit Adams-Bashforth method has been used for both the advective term and for the 
convective term for the velocity, and fully explicit for the pressure.

ui
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−ui
n

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 x i


3
2 [S ui
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2 [S ui

n−1 ] ,  (12)

where S u   is the sum of advective ( A u  ) diffusive ( D  u  ) terms and  the body forces ( F u  ), and u  represents 
any of the velocity components.

3.2. Pressure-velocity coupling

The pressure-velocity coupling is done by the use of pressure correction method. A velocity field is estimated by 
considering the pressure field in the previous time, the estimating velocity ui  is given by:  

ui
n1=ui

n−t  p
n1

 x i

3 t
2 [S ui

n ]−t
2 [S ui

n−1 ] .  (13)

The Boundaries condition to estimated velocities are back time velocities.
Subtracting Eq. (13) to Eq. (12), we obtain:
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n1
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 xi
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where  pl= pn1− pn  is the pressure correction in time step  n1 . This equation can be used to velocity correction 
obtained after the correction of pressure,

ui
n1

=ui
n1

− t
 pl
x i

.  (15)

To obtain a pressure-correction equation, applies the divergent operator to the Eq. (14),

− t ∇2 pl=∇ u n1−∇  un1 .  (16)
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where ∇
2  p   is the pressure curl, ∇ u   the velocity divergent and ∇ u   the estimated velocity divergent. Since the 

velocity divergent is null due to incompressible flow mass conservation (Eq. ()),

 t∇ 2
p l=∇  un1

 .  (17)

This equation is solved with null derivative boundaries conditions in all domain face.

3.3.  Spatial discretization

Fourth order central difference scheme was used in this assignment for velocity in Eq. (12). In this scheme any 
variable   and its derivative in  e  face of control volume are:

e=
7 PE−WEE 

12
 (18)

and

 ∂∂ x i
e=

15E−P−EE−w

12x i
.  (19)

respectively.
Transport properties values are evaluated in the volume faces using  using means when the value is not available in 

the face. A second order central difference scheme is used in the cross terms from the Navier-Stokes (Eq.  2), in the 
pressure correction and in velocity correction equations.

4. RESULTS

In the present work three cases were simulated: Reynolds number 3.200, 10.000, 25.000. The grid used in all case 
has 95 points in x  and y  direction and 65 points in spanwise direction z , The non-dimensional time step used was 
0.005. A fourth order discretization was used in all cases.

The velocities profiles, the root mean square RMS ) and one of the anisotropic components of the Reynolds tensor 
( ul vl ) are compared with experimental data of Prasad and Koseff (1989). Being

RMSu=ul ul  (20)

and

RMS v=v l v l .  (21)

The velocities profiles are compared with numerical data of Despande and Milton (1998) also. These profiles were 
obtained in the cavity central plane ( z=0.5 ). The velocity component  u  and  RMSu  profile were obtained in the 
vertical line ( x=0.5 ), the component v  and RMS v  in horizontal line ( y=0.5 ). The anisotropic components of the 
Reynolds tensor was obtained in both lines. 

The turbulent kinetic energy spectral density k , given by:.

k=
〈ui

l ui
l
〉

2
.  (22)

of all resolved scales were obtained through eight signals samples average.
To analyze the flow topology in this work will be used, vorticity isosurface and Q  criteria isosurface. It is defined 

as the half the difference of euclidean tensor norm at points where the vorticity tensor is larger than the deformation 
tensor by Jeong and Hussain (1995). An important observation is that this difference this difference decreases with the 
increase of the deformation norm, this occurs at the center of the eddy structures. According the definition, the equation 
of the criterion Q  is given by:

Q=
1
2

∣∣2−∣S∣
2 0 ,  (23)
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where   is the vorticity tensor and S  is the deformation tensor.

4.1. Coomparison with literature data

In the Fig. 1 the u  and v  profiles are compared with the experimental results of Prasad and Koseff (1989) and the 
numerical results of Despande and Milton (1998) for Reynolds number 3,200 (left) and 10,000 (right). There is a good 
agreement between the results shown, with a slight overestimate the speed at the minimum speed of the component of 
u  velocity profile for first case. This shows that the grid is insufficient for a direct simulation even for the lowest 

Reynolds number. Therefore it is necessary to model the turbulence, even for this case. The agreement is better for the 
other case, possibly due to the use of the Germano's dynamic model.

 

Figure 1. Velocity profiles in center lines of middle plane for Reynolds number 3200 (left) and 10000 (right).

The results obtained with this model show a difference of 0.8% for u  minimum velocity value near cavity button, 
5% for v  maximum velocity value near the back wall and 0.4% for minimum near front wall. Note that the flow near 
the back wall is more complex, so large errors are expected. Tables 1 shows detailed values values for comparison for 
Reynolds number 3,200 and 10,000 respectively.

Table 1: Results for maximum and minimum velocities for Reynolds number 3,200 and 10,000 flow.

Result
umin  near button wall vmax  near back wall vmax  near front wall

y umin x vmax x vmax

Re = 3,200

Prasad and Koseff (1989) 0.07816 - 0.25397 0.06334 0.19214 0.92894 - 0.38118

Despande and Milton (1998) 0.04667 - 0.23863 0.06667 0.20903 0.95333 - 0.41814

No model 0.04737 - 0.27339 0.05790 0.20061 0.95263 - 0.42439

Re = 10,000

Prasad and Koseff (1989) 0.03206 - 0.17460 0.06334 0.10824 0.96929 - 0.28412

Despande and Milton (1998) 0.03333 - 0.18299 0.66667 0.12491 0.96667 - 0.36377

Smagorinsky's model 0.03684 - 0.19322 0.04737 0.13105 0.963158 - 0.33017

Germano's Dynamic model 0.03684 - 0.18153 0.04737 0.11856 0.973684 - 0.36235

In the Fig. 2 the RMSu , RMS v  and ul vl  profiles are compared with the experimental results of Prasad and Koseff 
(1989) for Reynolds number 3,200 (left) and 10,000 (right).  There is a good agreement between the results shown. 
Observe that the shape of the profile is captured by the data, however, the peak fluctuation is not achieved, especially in 
the more turbulent region as in proximity of the walls.
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Figure 2. RMS  and ul vl  in center lines of middle plane for Reynolds number 3200 (left) and 10000 (right).

4.2. Spectral density of turbulent kinetic energy 

Figure  3 (left) shows the spectral density of turbulent kinetic energy in the center, near back wall ( x=0.3  and 
y=0.3 ) of the cavity obtained with dynamic modeling for Reynolds numbers 10,000. Three positions are shown. 

Observe that the central region ( z=0.5 ) has a higher level of turbulent kinetic energy. However there is a reversal near 
the wall ( z=0.1 ), the level of kinetic energy is greater than in ( z=0.3 ). This shift can be explained by the presence of 
the corner vortex, since it is a toroidal structure that extends in the anterior wall near the side walls.

Figure  3 (right) shows the spectral density of turbulent kinetic energy in the center, near back wall ( x=0.3  and 
y=0.3 ) of the cavity obtained with dynamic modeling for Reynolds numbers 10,000 and 25,000. We can see that for 

Reynolds number equal to 10,000 the level of turbulent kinetic energy is higher in larger structures at lower and lower, 
which indicates the formation of large structures in this case. In cases with Reynolds with 25,000 the level of turbulent 
kinetic energy is greater in smaller structures.

 

Figure 3. Turbulent energy density specters for Reynolds number 10000 (left) and in the point (0.3, 0.3, 0.3) (right).

4.3. Flow topology

The Fig. 4 (left) shows x  vorticity component isosurface to the flow Reynolds number 3,200 in undimentional at 
time 600s. We can see three pairs of counter-rotating like Taylor-Görtler type structure. In this case, these structures 
have been well defined. Note the presence of the corner vortex, which is the toroidal structure near the side wall. The 
mean flow x  vorticity component isosurface are shown in the Fig. 4 (right). In the mean flow does not persist the like 
Taylor-Görtler type structure, indicating that these structures are transient. However, the lateral vortices persist, which 
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is to be expected, since these structures is due interaction between the main flow and lateral wall, while the former are 
due to instabilities in the flow.

 

Figure 4: x direction vorticity isosurface in Reynolds number 3,200 flow at time 600s. wx = -0,50 (blue), wx = 0.50 
(gren) (left), and for mean flow wx = -1.00 (azul), wx = 1.00 (verde) and streamlines in planes x = 0.58 and y = 0.42 

(right) .

The flow to Reynolds number 3,200, as already noted, are considered by some authors as laminar. What can be 
observed with respect the topology of this flow is that the transient structures appear well defined and do not have 
strong  deformations.  But  this  should  still  be  cause  for  much  controversy.  We  should  be  noted  the  transition  to 
turbulence is a problem still unresolved, even considering an apparently simple configuration as the lid driven cavity.

The transient flow for the Reynolds number of 10,000 shows like Taylor-Görtler type structure extend in the flow 
direction and cross toroidal structures superimposed to them. These structures can be seen in the Fig.  5 (left). This 
figure shows Q criterion isosurface at time 500s. These structures deform the main vortex streamlines. These structures 
were not found in the simulation for Reynolds number 3,200. This deformation results in a mass transfer to upper flow 
making uniform the u  velocity profile.

 

Figure 5: Q criteria isosurface equal to 2.50 in Reynolds number flow 10.000 at time 500s (left) and streamlines from 
secondary vortices in Reynolds number 10.000 mean flow (right).

Figure 5 (right) shows secondary  vortices streamlines. There is a movement with helical turns closer in both the 
back and the front vortex. The front vortex presents a bifurcated structure, with the division around z=0.78 . The flow 
takes two opposite directions, one towards the plane of symmetry and the other towards the side walls. This bifurcation 
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appears to have a previous relationship with the remaining like Taylor-Görtler type structure in mean flow for Reynolds 
number 10,000.

In the flow for Reynolds number 10,000 the structures have well defined in transient flow. However they have quite 
deformed, which can be seen as a strong influence of small fluctuations in the structure of the flow. This fact combined 
with the emergence of structures in all directions at random characterized it as a fully turbulent flow. In the mean flow 
presents  more  complex structures  than  the  flow Reynolds  number  3200,  in  particular  the  bifurcation  of  the  front 
secondary vortex and like Taylor-Görtler type structure.

 

Figure 6: Isosuperfícies de vorticidade na direção x do escoamento a número de Reynolds igual a 25.000 no tempo igual 
a 400s. wx = -2,25 (azul), wx = 2,25 (verde)(left) (right) .

The  flow to Reynolds  number  25,000 has  five  pairs  of  counter-rotating  like  Taylor-Görtler  type vortices  well 
defined, though quite deformed. They can be seen in Fig. 6 (left). It show x direction vorticity isosurface at time 500s. 
These deformations appear to strongly influence the lateral vortices, one sees they are quite uncertain. This flow does 
not present cross flow coherent structures as the Reynolds number equal to 10,000. The structures are already present 
undefined and completely random.

For Reynolds number 25,000 the location of the front vortex bifurcation was found approximately z=0.77 , closest 
to the center than in the flow Reynolds number equal to 10,000. However you cannot come to a definite conclusion on 
this bifurcation, because greater Reynolds number studies are required, both to detect its occurrence and to verify its 
dependence on this parameter. However its influence on the flow is clear.

5. CONCLUSION

For the cases of Reynolds numbers 3,200 and 10,000 the mean velocities profiles agree well with experimental data 
and numerical data in the literature. The structures of the flow at Reynolds number 3200 are expected and found in the 
literature for this case. However, the flow Reynolds number equal to 10,000 was not presented in the literature: cross-
flow coherent structures and front secondary vortex bifurcation. The flow to Reynolds number equal to 25,000 shows 
no strong topological changes with respect to the flow Reynolds number equal to 10,000, especially with the mean 
flow. But the structures in this case are more random and undefined.
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