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Abstract. In this work, the Finite Element Method is applied in the solution of acoustic problems when the boundary
conditions present uncertainty. These boundary condition could represent sound absorbing materials which impedance
has spatial random variation. The problem considered in this paper consists of an-dimensional domain, representing a
closed cavity, with boundary divided in three non overlapping parts. In the first two parts, pressure and normal velocities
are prescribed. In the third one, the acoustic impedance, a relation between the velocity and pressure, is considered not
completely known and thus should be modeled using a statistical description and random variables. These variables com-
pose an additional dimension which is treated by an efficient, sparse collocation scheme, requiring simple modifications
of the deterministic Finite Element code available to obtain the pressure field. This technique also reduces the amount of
computational effort, when compared with the Monte Carlo technique and others stochastic approaches available in the
literature. We apply this method to some numerical examples and the results obtained shows that uncertainty levels in the
input data could result in large variability in the calculated pressure field in domain.
Keywords:sparse collocation, finite element method, uncertainty quantification

1. INTRODUCTION

The sound propagation in enclosures is an important field of acoustics. This importance arises as consequence of the
need in reducing or increasing the sound intensity in some regions of enclosures. A direct application of this knowledge
can be seen in the design of vehicles cabins, acoustic rooms etc. Some techniques could be used to reduce the sound
pressure field in enclosures. By far, the most applied method is damping the sound energy by using acoustic absorbers,
generally located at the walls of the enclosure. As the sound waves hit the absorber, part of energy is converted to heat,
another part is reflected back to the medium and a small fraction is transmitted to the absorbers’ supporting structure
(Cox and D’Antonio, 2004). The Helmholtz equation is normally used to model the propagation of acoustic waves. For
a large set of problems, there is no analytical closed solution to this equation, so, a numerical procedure should be used
to calculate the sound pressure field. The Finite Element Method (FEM) was successfully applied to the solution of this
equation in a large variety of boundary conditions. The application of FEM to the Helmholtz equation has also been
an object of study concerning the error estimation and propagation (see Ihlenburg and Babuska (1995a), Ihlenburg and
Babuska (1995b) and the references therein). Recently, the probabilistic modeling of mechanical problems has attracted
the attention of many researchers. In this type of simulation, the stochastic nature of some physical event is included
in the description of mathematical model. This results in probabilistic information in model response, allowing a better
design and increasing the reliability of mechanical system. There are two ways to include stochastical behavior in FEM:
A statistical approach, like the Monte Carlo technique. In this method, a large number of samplings of the input variables
is computed, the problem is then solved for each realization and the statistics are computed from solution population.
The other way is a non-statistic approach, which results in the analytical treatment of stochastic process. In this case, a
mathematical representation of the stochastic input variables should be included in mathematical formulation of problem.
The first technique is widely used since it is easier to implement and very robust. However, a great number of samples to
be solved could lead to a prohibitive computational cost. The second one allows a wiser use of numerical resources and
more accurate statistical solutions, resulting in a more reliable design. In the non-statistical approaches, the main concern
is how to achieve a mathematical description of stochastic process. The most widely technique used is the perturbation
method, where the stochastic quantities are expanded around their mean by a Taylor series and higher order terms are
neglected. The mathematical formulation could be solved with one or two terms, since more terms increase significantly
the mathematical complexity of the analysis. This limits the method to the problems with small randomness. Some other
techniques are based in a spectral representation of stochastic quantities like the Karhunen-LoËve expansion and Polyno-
mial Chaos (Xiu and Karniadakis (2002), Ghanem and Spanos (1991)). The Polynomial Chaos was originally developed
by Wiener (1938) and the technique was expanded by Xiu and Karniadakis (2002). Based in work of Wiener, Ghanem
and Spanos (1991) use a spectral representation to represent the output stochastic variables in terms of stochastic input
variables. When the FEM is the solution scheme used for spatial and temporal problem, this technique is named Spectral
Stochastic Finite Element Method. Recently, new methodologies to handle the stochastic nature of some problems were
developed. The Non-Intrusive Stochastic Galerkin (NISG, Acharjee and Zabaras (2007)) analysis is based in a finite ele-
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ment representation of stochastic quantities in a support space defined by the domain of input random variables. Based in
previous work on stochastic collocation method (Babuška et al. (2007) and Babuška et al. (2005)), this technique decou-
ples the random and spatial degrees of freedom, allowing great computational efficiency to stochastic modeling. Later,
further improvement was achieved by the use of a sparse interpolation in the random space dimension. In the Stochastic
Sparse Collocation Method (SSCM), an efficient, sparse interpolation technique is used to treat the random variables in
the solution process. This technique significantly reduces the number of deterministic evaluations necessary and can be
easily implemented, since it is also a non intrusive approach (Lins (2007), Asokan and Zabaras (2005)).

The SSFEM and NISG have a similar structure and both suffer the "curse of dimentionality", that is, the higher
the number of terms used to represent the stochastic input variables, the higher is the computational effort to solve the
problem. The SSCM alleviates this problem keeping the number of points to be evaluated in random dimension as the
minimum possible.

In this work, the Stochastic Sparse Collocation Method (SSCM) will be applied to the stochastic modeling of impedance
of an absorbing material. A one-dimensional sound propagation problem will be solved by the Finite Element method
in the spatial dimension. The mathematical problem is based in Helmholtz equation with Dirichlet and Robin boundary
conditions. The results will be compared with the analytical solution, NISG and the Monte Carlo technique.

2. STOCHASTIC ENCLOSED ACOUSTIC MODELING

2.1 Problem Setting

The main goal this work is to analyze the propagation of input uncertainties through internal acoustics models. The
problem considered here consists of steady state acoustic waves propagation in a closed cavity, geometrically corre-
sponding to a d-dimensional domainD ∈ Rd with a boundary divided in three non overlapping parts, e.g.:∂D =
∂Dp ∪ ∂Dv ∪ ∂Dz. In the first two parts, pressure (Dirichlet) and normal velocities (Neumann) are prescribed. The
input uncertainty relies on∂Dz, where the impedance velocity and pressure in the boundary is considered not completely
known and thus modeled as a random variableZ(x, θ;ω), with x andω standing, respectively, to the geometric dimension
and the circular frequency. Moreoverθ indicates the randomness and is, formally, associated to the complete probability
space(Ω, F, P ) whereΩ is the event space,F ⊂ 2Ω is theσ-algebra, andP : F → [0, 1] is the probability measure.

Thus, the problem considered here is an stochastic extension of the Helmholtz equation in the sense that a pressure
random fieldp(x, θ;w) satisfying the following equation is sought

Δp+ k2p = 0 (1)

p(x) = p0(x) on∂Dp (2)

∇p = v(x) ∙ n on∂Dp (3)

Zv(x).n = p(x) on∂DZ (4)

wherev is the boundary particle velocity,n is the boundary normal vector,p0, a given pressure distribution. The wave
number is given byk = ω/c, with c being the wave propagation velocity in the media andω is the wave frequency. The
randomness embedded in the data for solving this problem rests on the boundary impedance, a complex variable, which,
here, is modeled as a stochastic field, with real and imaginary part decomposition, e.g:Z = ZR(x, ω; θ) + jZI(x, ω; θ).
The formulation can be generalized as

L (x;u) = f(x), x ∈ D (5)

and the boundary conditionsB(x;u) = g(x), x ∈ ∂D. This is a deterministic problem. The solution to this problem
can be obtained in a variety of ways, like numerical or analytical methods. If the impedance is considered a random
variable, this formulation can be restated as

L(θ, x;u) = f(θ, x), x ∈ D (6)

and the boundary conditionsB(θ, x;u) = g(θ, x), x ∈ ∂D. This is a random differential equation. In this work, we
seek the solution of this equation (or, at least, some statistical properties of the solution), assuming that a deterministic
solver is available. A detailed formulation to the Finite Element equations for acoustic problems can be found at Lins
(2007).

2.2 Description of the Random Input

Previously, the generic stochastic acoustic model was set and the randomness was attributed to the impedance (con-
versely admittance) assigned to a part of the boundary which provides the mechanisms of sound energy attenuation. The
method that will be assessed later can be extended with no major modifications to different random inputs. It is important
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to highlight that by assumingZ as a random field a nonlinear input-output relation is naturally established. Indeed, in
many industrial and engineering applications, the general impedance of the system is designed towards enhancing acous-
tic comfort in an enclosed ambience, as it is frequently considered in the Automobile Industry. Thus, developing a sound
methodology to assess the uncertainty propagation through numerical modeling could be understood as a crucial issue
along the design of complex systems involving acoustics.

Specific aspects of the physical modeling itself are outside the scope of this work and they are partially covered in
the references, although some comments, serving as motivation for the analysis carried out here, are included in the
section devoted to the numerical examples. Indeed, those comments include more general situation in which impedance
considered as a random field can be useful to account the inherent variability, as is the case of scattering over rough
surfaces. The present section is devoted to introduce the main aspects of the formal description of the random input,
which are crucial for the development of the numerical formulation.

The variability of the input is taken into account by enlarging the functional space in whichZ is defined including
random dimensions. More intuitively, this can be understood as associating the variability with random variablesξα(α =
1, . . . ,∞) as illustrated in Ghanem and Spanos (1991). It is to be noticed that once the input is now considered random,
the output, here the acoustic pressure or any other function of it (e.g. sound intensity often used as a measure of acoustic
comfort), has also to be considered a random field. Therefore, the mathematical problem set before is to be understood in
a non deterministic framework.

A completely probabilistic description ofZ would, then, require the knowledge of the marginal system of probabilities
of the ξα variables. That seems to be non feasible in general terms, although a similar task has been carried out with
success in Faverjon and Soize (2004a) and Faverjon and Soize (2004b) to obtain the probability density function (PDF) of
a specific multi layer system. Even if it was possible having that description, the numerical formulation to be introduced
later is built upon a finite number of random dimensions. The model to the random impedance field operator will be
assumed to allow the following decomposition

Z(θ, x;u) = Z(ξ1(θ), ξ2(θ), . . . , ξN (θ), x;u) (7)

3. NUMERICAL FORMULATION: THE STOCHASTIC COLLOCATION METHOD

3.1 Random differential equations

Once the input variables are represented with by the use of a Karhunen-Lòeve series or any other mathematical repre-
sentation using a set of random variables, the Sparse Stochastic Collocation Method can approximate the random differ-
ential equation using polynomial functions. The solution is build up by the tensor product of the functions used in each
dimension of support space of random dimension. Lety = (ξ1, . . . , ξN ) be a point in theN -dimensional random space
Γ ⊂ RN , ΠN is the space of all polynomials of dimensionN with real coefficients andΠpN is this same space, limited to
the polynomials with degree less thanp.

Given the set{yi}Mi=1 ∈ Γ and the set of constants{bi}Mi=1 ∈ R we want to find the polynomial functionl ∈ VI ,
whereVI is a subset ofΠpN , such as

l(yi) = bi, i = 1, . . . ,M (8)

The points{yi}Mi=1 are the interpolation nodes andVI is the interpolant space. In the case of a smooth function
f : RN → R this interpolation can be seen as find the approximation polynomialI(f) ∈ VI such asI(f)(yi) =
f(yi), i = 1, . . . ,M . Using the Lagrangian polynomials it is possible to obtain an approximation to any point in space
Γ with

I(f)(y) =
M∑

i=1

f(yi)Li(y) (9)

The Lagrangian polynomials are such thatLi(yj) = δij , whereδij represents the Kronecker delta. So, if a problem
has a set of valuesu(yi, x) of the functionu(y, x) it is possible to obtain a approximation̂u(y, x) in the form

û(y, x) ≡ (u)(y, x) =
M∑

i=1

u(yi, x)Li(y) (10)

To use this interpolation in a problem with random variables, we can set, from eq.(6)

∫

Γ

ρ(y)L (y, x; û) v(y)dy =
∫

Γ

ρ(y)f(y, x)v(y)dy, ∀v(y) ∈ VI , x ∈ D (11)
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Using the interpolation scheme given by eq.(10) and choosingv(y) = Lj(y) we obtain

∫

Γ

ρ(y)L

(

y, x;

M∑

i=1

u(yi, x)Li(y)

)

Lj(y)dy =

∫

Γ

ρ(y)f(y, x)Lj(y)dy, j = 1, . . . ,M (12)

Since we use a Lagrangian interpolation, this equation results

L (yi, x;u(yi, x)) = f(yi, x), i = 1, . . . ,M, x ∈ D (13)

This a deterministic problem, which can be solved at the pointyi. The boundary condition results

B (yi, x;u (yi, x)) = g(yi, x) i = 1, . . . ,M x ∈ ∂D (14)

The operatorL(yi, .), restrained by the conditions givenB(yi, .), reduces to a spatial operator and this mathematical
formulation can be approximated using any numerical method as the Finite Element or Finite Volume Method (which will
result in a problem withNdof degrees of freedom in spatial dimension), or even analytical. So, the solution at theM
collocation points,u(yi, x) can be obtained and the interpolating function given by eq.(10) can be used. This can be great
advantage compared with the solution given by Stochastic Spectral Finite Element Method, which each degree of freedom
in random space is coupled with thedofsof the spatial dimension and results in system of linear equations of dimension
M ×Ndof . Comparing with the Monte Carlo technique, it can be noted that SSCM has similar implementation with the
evaluation points obtained not by using a random generator, but using the values of random variables at the collocation
points of support space.

Given the solutionu(yi, x) atM points, the solution statistics can be obtained using, for example to the mean value
of û(yi, x)

E [û(y, x)] =
M∑

i=1

u(yi, x)

∫

Γ

Li(y)ρ(y)dy (15)

The integration is determined by the choices of interpolation polynomials. Numerical quadrature techniques as Gauss-
Kronrod can be used.

The Doob-Dinkin theorem (Øksendal, 1998) states that the stochastic variables asu(x, ω, θ) could be represented as
functions of the variables defining the support space oru(x, ω, θ) ≈ u(x, ω, ξ1(θ), ξ2(θ)). With this in mind, it is possible
to compute the mean value for this variable with integration in this two dimensional space. In this work, it was used a
Gauss quadrature to compute thek-th statistical moment in the form:

E(uk) =
+∞∫

−∞

+∞∫

−∞
uk(x, ω, ξ1, ξ2)f1(ξ1)f2(ξ2)dξ1dξ2

=
Ngp∑

n=1

Ngp∑

m=1
wnwmI(u

k(ξ1n , ξ2m))f1(ξ1n)f2(ξ2m)

(16)

Wherewn is the weight in the integration pointn. f1 andf2 represent the probabilistic density function ofξ1 andξ2.
To compute this numerical integrations it is only necessary evaluate the sparse interpolant for the pressure variable in the
integration point(ξ1n , ξ2m). This could be done in the post processing stage, so any integration technique (even Monte
Carlo Integration) could be used.

3.2 Sparse Grids

The Collocation Technique developed at section 3.1 can find an approximation to a random differential equation using
the solution ofM deterministic problems. To reduce even more the computational effort these points should be chosen
in a way to achieve the maximum accuracy using the smaller set of points. These points can be determined by the used
of tensor product of complete polynomial functions in each dimension or by the use of sparse grids. In this work, we use
the sparse grid technique. The Smoljak algorithm can be used to compute the interpolant function for a multidimensional
sparse grid set, by extending the one dimensional interpolating functions to multidimensional space using a particular
form of tensor product. This combination can be chosen in order that some interpolation property forN = 1 is maintened
forN > 1. The number of nodes in the set is much less than the one obtained by the usual tensor product. This algorithm
was developed by Smoljak (1963) and information can be found in Barthelmann et al. (2000), Ritter and Novak (1996)
and Lins (2007).

The point set chosen should have some important properties. The Smoljak algorithm requires that the point set for
some interpolation level should contains all the points from levels below

(
Xi ⊂ Xi+1

)
then one of the best choice
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is the Chebyshev-Gauss-Lobatto points. These nodes distribution, in thei-th interpolation level, is given byXi ={
xi1, . . . , x

i
mi

}
, i ∈ N so

mi = 2
i−1 + 1, i > 1

xij = − cos
π(j−1)
mi−1

, j = 1, . . . ,mi
(17)

andxi1 = 0 if mi = 1. The number of points required grows considerably with the interpolation level when complete
meshes are applied.

Figure (1) shows the point distribution for two and three dimensional spaces using a sparse interpolant and meshes
generated using the tensor products of one dimensional set of Chebyshev-Gauss-Lobatto points.

Figure 1. – Collocation points for two dimensional space. Left: Nodes used in the Smoljak algorithm. Right: Tensor
product of one dimensional nodes

4. NUMERICAL EXAMPLES

4.1 1-D - The Kundt Tube

The Kundt tube is an experimental apparatus commonly used to measure the acoustical properties of a sample of an
absorbing material. The experimental setup is quite simple: a loudspeaker generates plane waves in the interior of tube,
the waves are reflected by the sample at the other end of tube and a standing wave is set up within the tube (figure 1). As
the sample changes the amplitude and phase of the sound wave, it is possible to calculate the impedance of the sample by
the measure of the pressure in some points of this standing wave (Cox and D’Antonio (2004), Schultz et al. (2007)).

Figure 2. – Impedance tube
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A simplification of this impedance tube is showed in fig.(2). We approximate this setup as an one dimensional domain,
with a Dirichlet and Robin boundary conditions. The Robin condition represents the impedance of the sample at the end
of the tube. With this in mind, the Helmholtz eq. (1) and the boundary conditions given by equations (2) and (4) will
result in the following mathematical formulation

d2p(x)

dx2
+ k2p(x) = 0 (18)

p(x) = p0 at x = 0
dp
dx
− jρω

Z
p(x) = 0 at x = L

(19)

Given the idealized domain show in fig.(2), these equations represent the acoustic source by a Dirichlet boundary
condition and the material impedance could be represented by a Robin boundary condition.Z is the impedance of
absorbing material. The analytical solution of eq. (18) and (19) is

p(x) = p0
Z cos k(L− x)− jρc sin k(L− x)

Z cos kL− jρc sin kL
(20)

It should be noted that the pressure field is a nonlinear function ofZ. In this numerical experiment, given a probabilistic
distribution for the absorbing material impedance, we compute the pressure distribution in this domain. As long as the
analytical solution is available, the statistics of pressure field can be obtained using Monte Carlo method, in a fast and
reliable way.

Schultz et al. (2007) presents a detailed analysis of uncertainty propagation in this experimental setup. The uncertainty
levels obtained by these authors were considered in numerical experiments presented in this work.

The finite element solution will be obtained by a one-dimensional mesh withn = 100 elements. The node coordinates,
using a uniform mesh are

xk =
k − 1
n
, k = 1, . . . , n+ 1 (21)

Figure (3) shows the elements distribution along the tube length.

Figure 3. – Finite Element Mesh

The impedanceZ is represented by a complex function with the following form

Z(ω) = i
α̃(ω)

ω
+ β(ω) (22)

α̃(ω) andβ(ω) are two frequency dependent parameters. For the sake of clarity, we can setα̃(ω)/ω ≡ α(ω). This
impedance model is widely applied since data for real and imaginary part of impedance is commonly obtained in experi-
mental tests. Despite of non-causality of this model, when transposed from frequency to time domain (Berthelot, 2001),
this formulation will be applied only for uncertainty analysis in calculated pressure field. The real and imaginary parts
impedance values considered in this numerical test correspond to experimental data available for glass woolManville
(Bermúdez and Rodríguez, 1999).

To proceed the stochastic analysis it is necessary to setup statistical information in the input data. We assume that the
real and imaginary parts of impedance could be represented by two stochastic variables with the following form

α(ω, θ) = ᾱ(ω) (1 + σ ξ1(θ))
β(ω, θ) = β̄(ω)(1 + σ ξ2(θ))

(23)

Whereξ1 andξ2 are two independent random variables with rangeξ1,2 ∈ [−1, 1] and zero mean.σ represents how much
the values ofα andβ fluctuates around the mean valuesᾱ andβ̄, and it can be directly related with the standard deviation
as described below. The maximum uncertainty principle can be used to define the statistical distribution ofξ (Soize,
2001). As long as only the mean values ofα(ω, θ) and the standard deviation are known, this principle states that the
uniform distribution should be selected to represent the random variables. Ifξ1 andξ2 are two uniform random variables
andσα andσβ are the standard deviation ofα(ω, θ) andβ(ω, θ) respectively, we can calculate

σα = std(α(ω, θ)) =
1
3 ᾱ(ω)σ

σβ = std(β(ω, θ)) =
1
3 β̄(ω)σ

(24)
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Later the following ratio will be used to measure the input uncertainty level:

rin =
σα

ᾱ(ω)
=
σβ

β̄(ω)
=
σ

3
(25)

For the input variables, this ratio is constant in all frequency range. Similarly, for output data the rate

rout =
σp

E[p]
(26)

WhereE[p] is the mean value of pressure field andσp is the pressure standard deviation. It should be note that both values
varies spatially and with frequency.

The one dimensional problem will be solved in the frequency range from 1Hz to 2kHz in steps of 0,5Hz. To each
frequency, the Monte Carlo method, the Non Intrusive Stochastic Galerkin (NISG) as proposed by Acharjee and Zabaras
(2007) and Stochastic Sparse Collocation Method (SSCM, Lins (2007)) were applied to calculate the statistical data from
output pressure field. The Table 1 shows the main features of each technique.

Table 1. Numerical data of the Methods applied

Method Features Number of evaluations
(per frequency)

Monte Carlo Number of samples: 15,000 15,000
NISG 20× 20 finite elements in support space

(4 integration points per elements)
1,600

SSCM Maximum approximation order: 4
Statistical moments calculation: Gaussian
integration in support space

Maximum: 114

All the techniques above used the Finite Element Method described in this section except the Monte Carlo Technique
which used the analytical solution (equation (20)). The SSCM has converged, in vast number of frequencies, with only
approximation of order 3, requiring only 49 evaluations of Finite Element Code.

The results obtained are shown in figs.(4)-(7).

Figure 4. – Pressure along spatial domain: mean and standard deviation of real part of pressure. Frequency=600Hz.

As can be seen the results obtained agree very well with data from NISG and Monte Carlo for the mean and standard
deviation both from real and imaginary part of stationary wave. To analyze the output uncertainty level, it is necessary to
choose one point in the domain and proceed to the computation of raterout. In the figs.(8)-(9) it is shown how the output
ratio varies according to the excitation frequency for two different positions in the domain (X = 0.1 andX = 0.5).

It should be noted that the agreement between the statistical information from these three formulations is quite good
in all frequency range, for each of input standard deviation. A gradual discrepancy increase can be observed in higher
frequency range: the Monte Carlo solution is slightly different from NISG and SSCM. This could be expected, as long
as some difference is expected from different solutions used by each of the methods (FEM for NISG and SSCM, and
analytical solution applied by Monte Carlo).
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Figure 5. – Pressure along spatial domain: mean and standard deviation of imaginary part of pressure. Frequency=600Hz.

Figure 6. – Pressure along spatial domain: mean and standard deviation of real part of pressure. Frequency=1800Hz.

Figure 7. – Pressure along spatial domain: mean and standard deviation of imag. part of pressure. Frequency=1800Hz.
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Figure 8. – Ratiorout = σ/E[p] for real part of pressure atX = 0, 1.

Figure 9. – Ratiorout = σ/E[p] for real part of pressure atX = 0, 5.

It should be observed that the uncertainty levels in the output are quite large when compared with the input uncertainty
levels (The straight dotted lines). In the vicinity of natural frequencies the uncertainty levels can be quite large.

The main information to experimental setup of Kundt’s tube that can be extracted from figures is the following:
There is a combination of sensor position and frequency ranges that can minimize the uncertainty in output data even
if uncertaintyies in the input information are high (as can be observed in high frequency range of positionX = 0.1).
Another conclusion is that despite of similarity with these figures and the FRF for each of these points, it should be quite
clear that the later can not provide some important information regarding the better positions and frequency range for
measure points in this experimental apparatus.

5. CONCLUSIONS

In this work, a efficient, sparse collocation technique was applied to the approximation of random differential equa-
tions. The solution was developed in order to estimate the pressure field in an enclosure, given the randomness of acoustic
absorbers panel. It is necessary to develop a mathematical model to represent this randomness using random variables. If
this model can be obtained, it will be possible to apply a space decomposition and represent this information using a series
of simple random variables. Each random variables defines a new dimension, composing a random space support. The
use of Lagragian polynomial interpolation in each dimension of random space allows to uncouple the random and spatial
dimension, and the solution could be obtained with usual FEM acoustic solver, with simple modifications. The compu-
tational effort was greatly reduced by the use of a sparse set of nodes in interpolation. The results obtained shows that
the technique is faster and more efficient than the ones based in Wiener Chaos polynomial approximation or other non-
intrusive approaches. The technique was applied in the solution of one dimensional problem, showing that the Kundts’
tube device, originally planned to obtain the acoustic impedance of sample of material, can suffer great uncertainty in
some combinations of input randomness, microphone position and frequency.
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