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Abstract. The recent advances in computational power has enabled high-performance computing as an effective tool for
analysis and design in Engineering and Applied Sciences. One major issue to be deeper understood and controlled is how
uncertainties in the input data impacts the reliability of the results obtained through computer simulations. Specifically
in the present work, the focus relies on hydro-ship dynamics in the context of floating offshore structures. Particular
emphasis is placed on investigating uncertainty propagation in the nonlinear response of flow-structures interactions,
(Xiu et al. 2005), (Witteveen et al. 2008). It is important to remind that waves and currents, major agents in the
dynamics of the floating structures, are usually modeled as random processes. Therefore, stochastic modeling seems to
offer an appropriate framework to tackle the external forces and uncertainties in the data, like, for instance, damping and
boundary conditions. In the present work, a sparse grid stochastic collocation method, (Ganapathysubramanian et al.
2007) is applied in a prototype problem of a single oscillator excited by means of an interaction force corresponding to
the Morison formula, (Xiu et al. 2002), containing the maritime wind velocity. Uncertainty in the system parameters are
taken into account and the convergence of the method is analyzed along a number of numerical experiments.
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1. INTRODUCTION

The increasing complexity involved in engineering systems has been, frequently, tackled with the use of sophisticated
computational models. That, from the decision makers standpoint, requires the use of robust and reliable numerical
simulators. Often, the reliability of those simulations is disrupted by the inexorable presence of uncertainty in the model
data, such as inexact knowledge of system forcing, initial and boundary conditions, physical properties of the medium, as
well as parameters in constitutive equations. These situations underscore the need for efficient uncertainty quantification
(UQ) methods for the establishment of confidence intervals in computed predictions, the assessment of the suitability of
model formulations, and/or the support of decision-making analysis, (Babuska ez al. 2004).

The traditional statistical tool for uncertainty quantification within the realm of Engineering is the Monte Carlo
method, (Elishkoff, 2003). This method requires, first, the generation of an ensemble of random realizations associ-
ated to the uncertain data, and then it employs deterministic solvers repetitively to obtain the ensemble of results. The
ensemble results should be processed to estimate the mean and standard deviation of the final results. The implementation
the Monte Carlo is straightforward, but its convergence rate is very slow (proportional to the inverse of the square root of
the realization number) and often infeasible due the large CPU time needed to run the model in question.

Other technique that has been applied recently is the so called Stochastic Galerkin Method (SG), which employs
Polinomial Chaos expansions to represent the solution and inputs to stochastic differential equations, (Babuska et al.
2004). A Galerkin projection minimizes the error of the truncated expansion and the resulting set of coupled equations is
solved to obtain the expansion coefficients. SG methods are highly suited to dealing with ordinary and partial differential
equations, even in the case of nonlinear dependence on the random data. The main drawback with SG relies on its need of
solving a system of coupled equations that requires efficient and robust solvers and, most importantly, the modification of
existing deterministic code. This last issue entails difficulties on using commercial or already in use codes. A non-intrusive
method, referred to as Stochastic Collocation (SC), (Xiu et al. 2005), arises towards addressing this point. SC methods are
built on the combination of interpolation methods and deterministic solvers, likely Monte Carlo. A deterministic problem
is solved in each point of an abstract random space. Similarly to SG methods, SC methods achieve fast convergence when
the solution posses sufficient smoothness in random space.

Specifically in the present work, the focus relies on hydro-ship dynamics in the context of floating offshore structures.
Particular emphasis is placed on investigating uncertainty propagation in the nonlinear response of flow-structures inter-
actions, (Xiu et al.2002), (Witteveen et al. 2008). It is important to remind that waves and currents, major agents in the
dynamics of the floating structures, are usually modeled as random processes. Therefore, stochastic modeling seems to
offer an appropriate framework to tackle the external forces and uncertainties in the data, like, for instance, damping and
boundary conditions.

Here, the flow-structure interaction is modeled in a simple way focusing the assessment of an SC method as an effective
tool for uncertainty quantification. The interaction is introduced by means the Morison’s formula, which represents a
challenge, despite the simplicity of the model itself, as far as the input is a nonlinear function of the random variables.
Those variables represent the phase angle which inherent to the time series description of the wave induced motion.
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2. ABSTRACT PROBLEM DEFINITION

To quantify the uncertainty in a system of differential equations we adopt a probabilistic approach and define a com-
plete probability space (2, F, P). Where ) is the event space, F C 2 is the o-algebra of subsets in Q and P : F — [0, 1]
is the probability measure. Utilizing this framework, the uncertainty in a model is introduced by representing the model
input data as random field.

2.1 Governing Equations

Consider the general differential equation defined on a d-dimensional bounded domain D C RY, d = 1,2,3 with
boundary 9D. The problem consists on finding a stochastic function, u = u(w, x) : Q x D — R, such that for P-almost
everywhere w € (), the following equation holds:

Lw,x;u) = f(w,x), xeD (1)
Bw,x;u) = g(w,x), x € 0D 2)
where X = (21,...,24) € R4, d > 1, are the space coordinates in R®, £ is a linear or non linear differential operator

and u(w) = (u1(w),...u;(w)) € R, i > 1, are unknown solutions, (Xiu et al. 2005).

To solve equations (1) and (2) sometimes it is necessary to reduce the infinite dimensional probability space (2, F, P)
to a finite dimensional one. This can be accomplished by characterizing the probability space by a finite number of
random variables. Thus, employing any truncated spectral expansion of the stochastic process in the probability space,

one characterize the random inputs by a set of N random variables y = (Y7 (w),...,Yny(w)) and rewrite the random
inputs as,
Lw,x;u0) = LY w),..., YN (w),x;u), flw,x) = f(YHw),..., YN (w),x), 3)

Hence, following the Dob-Dynkin lemma, (Oskendal 2005), the solution of (1) and (2) can be described by the same
set of random variables {Y#(w)}¥ |, that reduce the infinite dimensional probability space to a N-dimensional space, i.e.,

u(w,x) =u(Y(w),..., YV (w),x) 4)

Now assuming that {Y*}¥ | are independent random variables with probability density functions p; : I'* — R, and
their images I'" = Y*(£2) bounded intervals in R for i = 1,..., N, the joint probability density of y = (Y!,..., Y¥)
hold,

N
py) = [[m(¥")  wyer, (5)
i=1
and the space support,
N .
= H I c RV, (6)
i=1

This allow us to rewrite (1) and (2) as a (N + d) dimensional differential equation as following,

L(y,x;u) = f(y,x), (y,x) eI'xD (7
B(y,x;u) = g(y,x), (y,x) €' x 9D ®)

with IV dimensionality of the random space I" and d the dimensionality of the physical space D.

Now, we define a (finite dimensional) subspace Vr C L%(F), as the space of all square integrable function in I' with
respect to the measure p(y)dy. Hence, like others deterministic problems we can seek u, (y, z) € Vr(y) solving (7) and
(8) for the following the weak formulation,

/F )Ly, %, u)o(y)dy = / P f (. X)o(y)dy,  Yoly) € Vox €D ©)

/Fp(y)B(y,x,;uv)v(y)dy = /Fp(y)g(yx)v(y)d% Yu(y) € Vr,x € 9D. (10)

Thus becoming a deterministic problem in the physical domain D and can be solved by a common discretization technique
as finite elements or finite volume method for example.
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3. MONTE-CARLO METHOD

Monte Carlo simulation (MCS) is a simple way to solve complex problems, for this reason is one of the most widely
used methods for solving stochastic differential equations and validate new methods. Briefly, a typical simulation consists
in carrying out K experiments, it is independent of the number of random variables {Y*(w)}¥ |, and then performing a
statistical analysis of the output, finding the means and variances for example. The main problem of this method is that
their convergence rate is relatively slow, (Elishkoff ef al. 2008), and many times are often infeasible due to the large CPU

time needed to run a simulation.

The typical sequence of steps to implement the Monte Carlo method in a problem is the following:
o Identify the random parameters and their probabilities densities.
e Generate £ random realizations.

e Solve the deterministic problem (7) and (8) with y; = (Y}! ... Y;") as following,

forj=1:k
{1l = {Yj(w)hi, (11)
Llyj,x;u;) = f(y;,x)  (y5,x) €' xD (12)
B(yj,x;w;) = g(y;,x)  (y;,x) €' x 9D (13)
end

e Post-process the solutions u; = u(y;, X) i.e. evaluate the solution statistics, i.e.

LM
(u) = =— Z u; (14)
M =
Where E[u fF p(y)u(y)dy is the expectation, on the other hand higher order statical moments can be obtained, but

they often requ1re accurate values or a larger set of outputs.
4. STOCHASTIC COLLOCATION METHODS

The basic idea of this method is to have a finite element approximation for the spatial domain and approximate the
multi-dimensional stochastic space using interpolation functions on a set of collocations points {Y*}¥ , in the support
space I' C RY. Stochastic Collocation methods have arisen to address some limitations of Stochastlc Galerkin (SG)
method, (Babuska ef al. 2004). The main constraints of the SG is the complexity that increases rapidly with the number
of entries, and requires the solution of coupled systems of equations, sometimes this is only possible by modifying the
current deterministic code.

The advantage of Stochastic Collocation method is that combines the strengths of non-intrusive sampling. Similarly
to Monte Carlo methods, SC requires only the solution of a set of decoupled equations, allowing the model to be treated
as a black box and solved it with existing deterministic solvers. For example in 1D, SC are built upon using Lagrange
interpolation that relies on a finite number of points y; . . . yas, some real constants by . .. by, and a sub-space V7 € [] N
Moreover, the following condition is enforced for [ € V;

l(y;) = b;, ji=1...M (15)
Where, the points y; . .. yas are called interpolation nodes and V7 interpolation space. Lagrange interpolation of a smooth

function, f : RV — R, find a polynomial Z(f) € V7 such that Z(f)(y;) = f(v:),¥i = 1,..., M. The polynomial
approximation Z( f) can be expressed by using the Lagrange interpolation polynomials, i.e.

M
= > Fuk) Le (i), (16)
k=1

where, L;(y) € Vi, Li(y;) = d;5, with 1 <4, j < M, are the Lagrange polynomials.
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By denoting,
M
a(y) = Tu(y) = Y u(ye) Li(y:), a7
k=1

the collocation procedure to solve the stochastic equations (7) and (8) goes as follows,
R(U(y))y, =0 Vk=1...M -

where R(0) = L(u) — f is the residual of (7). By using the property of Lagrange interpolation, we immediately obtain:
fork=1...M

L(yr,x;u) = f(yr,X), (yr,x) €' xD (19
B(yr,x;u) = g(yx,Xx), (yr,x) €T x 0D (20)

Thus, the stochastic collocation method is equivalent to solving M deterministic problems (7) and (8), at each nodal point
Yk, k =1,..., M in a given nodal set.

The computational complexity of the SC is solve M times a deterministic problem, where M is the total number of
collocation points. For this reason we need to chose a nodal set with fewest possible number of points under prescribed
accuracy requirement. Sparse Grids are presented as a effective option according to (Nobile et al. 2007). Hence, with
a simple weighted sum of the value of the basis functions for all collocations points in the sparse grid. Essentially,
a cubature of the interpolating function across the stochastic space, the integration is very straightforward because the
weights corresponding to known nodal positions are computed a priori. The method allow us to obtain a visualization of
the solution to the dependence on the random variables and also easily extract the mean and variance analytically as well
its probability density function (PDF), leaving only the interpolation error.

As example, the mean can be evaluated by,

M
E@)x) = u(ye o) / Li(w)o(y)dy @1
k=1 r

The evaluations of such expectations require explicit knowledge of the Lagrange interpolation polynomials { Ly (y)},
where for a given nodal set, the integrals of the polynomials can be determined numerically. In multivariate cases, such
procedure can be cumbersome, but can be accomplished once for all at the pre-processing stage. The above described
path has an straight extension to the multivariate case, in which the random space is no more 1D, by using tensor products
of the one dimensional interpolations, (Xiu et al. 2005).

5. NUMERICAL EXAMPLE: FLOW-STRUCTURE INTERACTION

To illustrate the technics developed in the preceding sections, a simple application will be shown to follow. With this
objective, a mass-spring-damper system with external parametric random excitation was employed. Then,

§(t) + cy(t) + ky(t) = F(t,01,02) (22)

this is a first approximation to a more complex model of structure with internal damping and stiffness to describe a flow-
structure interactions. Where the effect of the flow on the system has been modeled via the force term given by the
Morison formula:

1
F(t,01,02)) = §pCDU(t,91,92) | v(t,61,62) | (23)
where the parameters 6, 0, are assumed to be independent [0, 27| standard uniform random variables, Cp represent the

drag coefficient, p the fluid density and v(t) the velocity field of the fluid. Hence, this differential equation can be solved
using a conventional Runge-Kutta method.

To calculate the velocity field, we used the Pierson-Moskovits (P-M) spectrum, given by

8.1 x 107342 g \4
Spp = —F— —0.74( ) —4 24
m w5 exp< Uw,19.5 “ ey

where g is the gravity acceleration and Uy, 19.5 is the wind speed at a height of 19.5m above the still water. This is the
most extensively used spectrum for representing a fully developed sea and where the sea severity can be specified in terms
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of the wind velocity. The ocean waves spectrum models are semi-empirical formulas, derived mathematically, but the
formulation requires one or more experimentally determined parameters.

Hence, using the linear wave theory, also called Airy wave theory we can obtain the linear wave profile and velocity
in terms of a spectral density, (Benaroya et al. 2005).

. coshk;x

vy(z,y,t) = Z wlmcos(u}it — kiy — 0;) /28y, (wi) Aw; (25)
i=1 v

Assuming that the velocity field is composed by two terms corresponding to different waves periods ¢ and ¢, the
equation holds,

1
sinh(kid)

w2

WCOS(Wgt — kg’y — 92)

vy(y,t) = cos(wit —k1y —61)1/2S,,(w1)Awy + 28, (w2)Awy (26)

In the following Table 1 the values adopted are summarized,

Table 1. Simulations values

c | elasticity coefficient | 80 N/m c damper coefficient | 1000 Ns2/m
t1 wave period1 5s Uw,19.5 wind velocity 5 m/s

to wave period2 2s g gravity acceleration 9.8 m/s2
wy | angular frequencyl | 1.25 rad/s Cy drag coefficient 1
wo | angular frequency2 | 3.14 rad/s p water density 1000kg/m3
k1 wave number] Lm=t A front area Im2

ko wave number2 Im™! d water depth Im

As example, assuming ¢, and 6; independent and uniformly distributed random number between 0 and 27 Figure 2 shown
the response of F'(t,61,02)) in tspan = [0, 30],
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Figure 2. Response of excitation term for a random

Figure 1. Wave scheme input

furthermore, integrating the Eq.(22) we obtain the followings responses:
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Figure 3. Solution with one random input Figure 4. Solution with many random inputs

5.1 Monte carlo Method

Now, we analise the convergence of Monte-carlo performing eight experiments for increasing numbers of realizations,
ie. [10, 50, 100, 200, 500, 1000, 3000, 6000] and calculate the mean and variance of each experiment. The error is
estimated calculating the norm between consecutive means, and likewise with the variance. Table 2 shown the results
obtained at each experiment and the computational cost, as well the evolution of the error.

Table 2.

N | Experiments | Time(s) | Mean Error | Variancie Error
- 10 5.97 - -

1 50 33.74 0.4649 0.0134

2 100 89.97 0.1669 0.0053

3 200 200.33 0.1025 0.0049

4 500 476.09 0.0589 0.0029

5 1000 1027.86 0.0336 0.0025

6 3000 2682.08 0.0109 0.0016

7 6000 5982.05 0.0051 0.0007

Figures (5) and (7) shown the mean and variance for different experiments with increasing number of realizations and
Figures (6) and (8) the evolution of the error.
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Figure 5. Mean of experiments for increasing realizations Figure 6. Error convergence of mean
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5.2 Stochastic Collocation Method
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In this section we showcase the collocation based strategy to solving Eq.(22) using a sparse grid to interpolate the
stochastic solution. We analyse the method comparing the mean and variance solution for increasing levels of sparse
grids interpolation, i.e. [2, 4, 6, 8] and a standard reference solution of Monte Carlo simulation computed for 6000 re-
alizations. The error is estimated calculating the norm between the MCS solution, taken as reference, and the sparse
grid solutions. Figure (9) show the increasing levels grids used in the analises, for two dimensional parameter space and
isotropic Smolyak Clenshaw-Curtis abscissas. For the construction of the interpolation functions, was utilized the Sparse
Grid interpolation toolbox of Matlab, developed by (Klimke 2008).

Level 2

Level 4

Level 6

Figure 9. Sparse grid interpolation level

Level 8

Table 3 shown the level of interpolation, the number of collocations points, the computational cost in seconds to calculate
the moments respectively for each level, as well the evolution of the error comparing (SC) with (MCS).

Table 3.
N | Level | Grid points | Time(s) | Mean Error | Variance Error
1 2 13 21.43 0.1102 0.0139
2 4 65 78.23 0.0136 0.0019
3 6 321 265.63 0.0106 0.0009
4 8 1537 1020.26 0.0085 0.0006
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Figures (10) and (12) shown the mean and variance for increasing levels of sparse grids interpolation and Figures (11)
and (13) the evolution of the error. Finally, we present an estimation of the probability density function (PDF) function
from histogram in two times. Finally, we present an estimation of the probability density function (PDF) function from
histogram in two times ¢ = 1s and ¢ = 20s.

03 . T : 012 . T T T
: —— MC3B000 : : : :
st DERE |
: — SC:leveld
I L ———5Cilevels
v ——— BClevell |
AV, IAGATY
005 i I I i | 0 i 1 I i |
a 1a 15 20 25 a0 1 148 2 25 3 38 4
Tirne M
Figure 10. Mean for increasing level Figure 11. Error convergence of mean
510
3 T T 0.014
: ; | ———MCS:5000 :
i F : S0 eveld 0012 i ? 3
gl O M= S |
— SC:leveld 0ol k
gl - : ) i . :
- . ; . :
% At ] u% i : ; : ;
2 : . : 2 DLUOOB e s bbb T
; ; : i i 0
i} 5 10 15 20 25 30
Time n
Figure 12. Variance for increasing level Figure 13. Error convergence of variance
90 90

-0.05 0 005 01 015 02 025 03 1 -005 0 005 01 015 02 025 03
(1) ¥(20)

Figure 14. Histogram t=1s Figure 15. Histogram in t=20s
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6. CONCLUSIONS

In this work we present the Monte Carlo Simulation method and Sparse Grid Stochastic Collocation method for solving
a partial differential equations with random input data. Like Monte Carlo method, Sparse Grid Stochastic Collocation
method leads to the solution of uncoupled deterministic problems and, as such, it is simple to implement. These non-
intrusive methods, allows convert any deterministic code into a code that solves the corresponding stochastic problem.

However, compared with Monte Carlo Simulation method, Sparse Grid Stochastic Collocation method, present sig-
nificative reduction in the number of experiments required to achieve the same level of accuracy. This was presented in
Section 5, where utilizing the error estimated, we compare both methods in terms of computational work to achieve the
same accuracy and (SGC) was much more efficient than (MCS).

Future work of this research will include the study of complex systems and the analysis of anisotropic and adapta-
tive version of the Sparse Grid Stochastic Collocation method. Many problems vary rapidly in only some dimensions,
remaining much smoother in other dimensions, consequently, it is important increase the level of accuracy only in certain
dimension. This can improve the results obtained by reducing the curse of dimensionality, i.e. the problem caused by the
exponential increase in volume associated with adding extra dimensions to a mathematical space.
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