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Abstract. A computational simulation was done in order to analyze the influence of the variable solute distribution 
coefficient on a process of mass separation in modules of hollow-fiber membranes. Due to the functional variation of 
this coefficient, a nonlinear boundary condition at interface solute-membrane is found, this way an analytical solution 
for the mass diffusion equation is not possible, therefore, the Generalized Integral Transform Technique (GITT) is then 
used to obtain a hybrid analytical-numerical solution for this physical problem. The use of the GITT approach in such 
analysis leads to a coupled system of first order ordinary differential equations in the axial variable. The resulting 
transformed ODE system is then numerically solved by Gear's method for stiff problems. Numerical results are 
presented for the average solute concentration along the dimensionless axial length with different values of the 
governing parameters (Sherwood number and dimensionless slope of the distribution coefficient), permitting to verify 
their effects on the mass transfer separation. A comparison is also performed with previously reported results in the 
literature to evidence a critical evaluation of the technique performance. 
 
Keywords: mass transfer separation, hollow-fiber membrane modules, variable solute distribution coefficient, integral 
transforms. 

 
1. INTRODUCTION 
 

The development of membrane separation processes and their industrial applications are considered relatively 
recent, especially taking into account that phenomena involving membranes have been studied for over a century 
(Habert et al., 2006). Recently, it has increased the interest in the use of supported liquid membranes as selective barrier 
separation (Urtiaga et al., 1992). The membranes extractant contain a substance or a carrier, which facilitates the 
process of selective permeation by the use of facilitated transport mechanisms (Gherrou and Kerdjoudi, 2002). 

A promising technique for separation by liquid membrane is the use of micro-porous hollow-fibers modules as part 
of contact between the liquid-liquid phases (Prakorn et al., 2004). The basic principle of mass separation in hollow-fiber 
supported liquid membranes (HFSLM) is the immobilization of organic extractant in the pores of a hydrophobic 
membrane (Loiacono et al., 1986, Sheng et al., 2004). 

The transport of solute through a membrane is that becomes limiting the mass transfer rates in selective mass 
separation devices. An important physical parameter to analyze the transport of solutes through a membrane is the 
Sherwood number, which is defined as the ratio of the resistances of solute mass transfer in the fluid to the solute mass 
transfer in the membrane. Urtiaga et al. (1992) reported that membranes used in selective mass extraction processes 
have a relatively small Sherwood number, which makes lower solute mass transfer rates, and that in liquid membranes, 
a relatively high Sherwood number is obtained, when it is employed appropriate liquid with higher distribution 
coefficient for the solute. 

The mathematical model for mass transport in modules of hollow-fiber membranes is discussed in this work, and it 
is assumed that the hollow-fibers are small enough to lead the steady laminar flow of the fluid containing the solute in 
the fully developed region and Fickian diffusion in the perpendicular direction to the flow (See Fig. 1). Here, it is also 
discussed the problem of a variable solute distribution coefficient as a function of the solute concentration, and its effect 
on the mass transfer rate in modules of hollow-fiber supported liquid membranes. The removal of the solute in the fluid 
that permeates through the membrane is done by Fickian diffusion, which reacts with an exhaustion solution (stripping) 
at the membrane external wall. The exhaustion solution that circulates outside of the membrane removes the solute in 
the fluid that permeates through the membrane under chemical reaction. The chemical reaction that occurs between the 
solute and the exhaustion solution at the external wall of the hollow-fiber is instantaneous and makes the solute 
concentration in the stripping phase to be equal to zero. A diagram of the separation mechanism is shown in Fig. 2 
according to the considerations taken into account in the model. 
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Figure 1. Hollow-fiber module with tube side solute-solution flow. 
 
 

 
 

Figure 2. Diagram of the mass transfer mechanism in a module of hollow-fiber membranes. 
 
 

Therefore, the present work is aimed at developing a computational code capable of simulating the process of 
solute extraction using hollow-fiber supported liquid membranes, and the influence of the variable solute distribution 
coefficient on a process of mass separation is closer analyzed. For this purposes, the GITT approach is then employed to 
solve the equation of species conservation related to such solute extraction. Numerical results are produced for the 
average solute concentration distribution along the dimensionless axial variable, which are discussed in the light of the 
influence of relevant parameters in the extraction process, such as, Sherwood number and dimensionless slope of the 
distribution coefficient. Comparisons with previously reported results in the literature by Urtiaga et al. (1992) for typical 
situations are also performed permitting to evaluate the technique performance. 
 
2. MATHEMATICAL FORMULATION OF THE PHYSICAL PROBLEM 
 

The equilibrium distribution coefficient H is defined as the equilibrium distribution ratio of the solute concentration 
in the liquid membrane to the concentration in the fluid side (Urtiaga et al., 1992). According to Urtiaga et al. (1990) 
and Urtiaga (1991), it is assumed that exists a linear dependency of the distribution coefficient on the solute 
concentration in the aqueous phase in the following dimensionless form: 
 

 
* *
i

0
0

C h
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h
= + γ γ =  (1,2) 

 
where h0 is the value of the distribution coefficient for infinite dilute solutions; γ is the dimensionless slope and takes 
into account the dependency of the solute distribution coefficient on the solute concentration (γ=0 for a constant 
distribution coefficient); *

iC  is the solute concentration in the hollow-fiber inlet (mol/m3); and *h  is the slope of the 
distribution coefficient (m3/mol). 
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The mathematical modeling for this physical problem is based on the equation of species conservation related to 
the solute extraction in the fluid phase, which together with the appropriate inlet and boundary conditions in 
dimensionless form are written as (Urtiaga et al., 1992): 
 

 2 C 1 C2(1 r ) r ,    in 0<r<1, z>0
z r r r

∂ ∂ ∂⎛ ⎞− = ⎜ ⎟∂ ∂ ∂⎝ ⎠
 (3) 
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The following dimensionless groups were employed in Eqs. (3) to (6) above 
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where C is the dimensionless solute concentration, r and z are the dimensionless radial and axial coordinates, and ShW is 
the Sherwood number. Also, C* is the solute concentration (mol/m3), r* is the radial coordinate (m), R and R0 are the 
inner and outer radii of the hollow-fiber, respectively (m), z* is the axial coordinate (m), D is the solute diffusivity in the 
fluid phase (m2/s), uav is the average fluid velocity (m/s), km is the membrane permeability coefficient (m/s), and s is the 
hollow-fiber shape factor. 

Equation (6) represents a nonlinear boundary condition at interface solute-membrane, because the functional 
variation of the distribution coefficient, so that an analytical solution for the equation of species conservation is not 
possible, therefore, the Generalized Integral Transform Technique (GITT) is then used to obtain a hybrid analytical-
numerical solution for this physical problem. 
 
2.1. Solution methodology 
 

The next step is to find a solution for the potential C(r,z), and for this purpose, it is followed the ideas in the GITT 
approach (Cotta, 1993), so that it has to be selected an appropriate auxiliary eigenvalue problem, which shall provide 
the basis for the eigenfunction expansion. Therefore, the following eigenvalue problem is proposed: 
 

 2 2i
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where µi and ψi(r) are the eigenvalues and the eigenfunctions, respectively. The problem defined by Eqs. (8) to (10) is 
solved by the so-called Sign-Count Method or by the GITT approach itself (Mikhailov and Özisik, 1984; Cotta, 1993), 
which offer safe and automatic accurate computation as many eigenvalues and eigenfunctions as desired. Such 
eigenvalue problem enjoys the following orthogonality property: 
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The auxiliary eigenvalue problem given by Eqs. (8) to (10) allows the definition of the following integral transform 

pair for the potential C(r,z): 
 

 

1

i i

0

C (z) W(r) (r)C(r, z)dr= ψ∫ ,   transform (14) 

 i i

i 1

C(r, z) (r)C (z)
∞

=

= ψ∑ ,   inverse (15) 

 

where 1/2
i i i(r) (r) / Nψ = ψ  are the normalized eigenfunctions, and Ni is the normalization integral. 
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The next step is thus to accomplish the integral transformation of the original partial differential equation and the 
inlet and boundary conditions given by Eqs. (3) to (6). For this purpose, such equations are multiplied by the 
normalized eigenfunctions, integrated over the domain [0,1] in r, and the inverse formula given by Eq. (15) is 
employed. After the appropriate manipulations, the following coupled ordinary differential system results, for the 
calculation of the transformed potentials iC (z) : 
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The system of coupled ordinary differential equations given by Eqs. (16) and (17) constitutes a nonlinear initial 

value problem of infinite equations, which has to be truncated in a sufficiently high number of terms N, in order to 
compute the transformed potentials iC (z) . In the solution of such system, due to its stiff characteristic, appropriate 
subroutines must be employed, such as the subroutine DIVPAG from the IMSL Library (1991). This subroutine 
provides the important feature of automatically controlling the relative error in the solution of the ordinary differential 
equations system, allowing the user to establish a priori error targets for the transformed potentials. Once the system 
given by Eqs. (16) and (17) is solved for such transformed potentials, the inverse formula, Eq. (15), is recalled to 
provide the concentration field. 

Afterwards, physical quantities of practical interest such as the average solute concentration is defined as 
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Also, through the application of the inverse formula given by Eq. (15) into Eq. (18), one obtains the following 

expression for the average solute concentration: 
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∞
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3. RESULTS AND DISCUSSION 
 

Numerical results for the Cav(z) concentration distribution were obtained along the axial coordinate evolution. For 
this purpose, a computational code was developed in FORTRAN 90/95 programming language and implemented on an 
INTEL CORE (TM) 2 DUO 2.13 GHz computer. The routine DIVPAG from the IMSL Library (1991) was used to 
numerically handle the system of ordinary differential equations given by Eqs. (16) and (17), with a relative error target 
of 10-8 prescribed by the user. Different values of the governing parameters (Shw and γ) were employed in the 
computational simulations, whose results are shown in terms of convergence behavior in table forms and graphically 
compared with those of Urtiaga et al. (1992). 

Table 1 presents the results of the dimensionless average solute concentration Cav(z) with Sherwood number equal to 
10, dimensionless slope for the variable distribution coefficient, γ=0.1, at the dimensionless axial lengths, z=0.01, 0.1, 
0.2, 0.5, 1.0 and 2.0. As can be observed, it was a convergence of four significant digits using a truncation order of 
N=1000 terms in the summations. Similarly, Tab. 2 brings a convergence behavior for Cav(z) with Shw=10 and γ=1, and 
for this case a truncation order N, within the range of 500 to 600 terms in the summations, a fully convergence of four 
digits is reached. It is also verified that for this case, the results for Cav(z) are lower than for the case Shw=0.1 and γ=10, 
this way evidencing the strong influence of the Sherwood number. The consistency of the results shown in Tabs. 1 and 
2 is a direct validation of the computational codes developed in the present work. 
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Table 1. Convergence behavior of the average solute concentration along the axial length for Shw=0.1 and γ=10. 

 

z 
Cav(z) 

Shw=0.1 and γ=10 
N=100 N=200 N=300 N=400 N=500 N=600 N=700 N=800 N=900 N=1000 

0.01 0.9833 0.9834 0.9834 0.9835 0.9835 0.9835 0.9835 0.9835 0.9835 0.9835 
0.1 0.8762 0.8768 0.8770 0.8771 0.8772 0.8773 0.8773 0.8773 0.8774 0.8774 
0.2 0.7851 0.7859 0.7863 0.7865 0.7866 0.7867 0.7867 0.7868 0.7868 0.7869 
0.5 0.5881 0.5891 0.5896 0.5898 0.5900 0.5901 0.5901 0.5902 0.5903 0.5903 
1.0 0.3950 0.3960 0.3963 0.3966 0.3967 0.3968 0.3969 0.3969 0.3970 0.3970 
2.0 0.2165 0.2171 0.2173 0.2175 0.2175 0.2176 0.2176 0.2177 0.2177 0.2177 

 
 

Table 2. Convergence behavior of the average solute concentration along the axial length for Shw=10 and γ=1. 
 

z 
Cav(z) 

Shw=10 and γ=1 
N=100 N=200 N=300 N=400 N=500 N=600 N=700 

0.01 0.9224 0.9225 0.9226 0.9226 0.9227 0.9227 0.9227 
0.1 0.6360 0.6361 0.6362 0.6362 0.6363 0.6363 0.6363 
0.2 0.4556 0.4557 0.4558 0.4558 0.4558 0.4558 0.4558 
0.5 0.1749 0.1749 0.1749 0.1749 0.1749 0.1749 0.1749 
1.0 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 0.0358 
2.0 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 

 
 

Figure 3 shows the influence of change in the distribution coefficient on the dimensionless average concentration 
Cav(z) along the axial length for the Sherwood number equal to 0.1 and different values of the parameter γ. It is 
observed that with increasing axial length z the solute average concentration diminishes for all values of the parameter γ 
analyzed. However, a reduction in Cav(z) is less intensified for negative values of γ, indicating that the extraction 
process becomes more efficient for positive values of such parameter.  
 

 
 

Figure 3. Comparison of the average solute concentration along the dimensionless axial length for Shw=0.1 and different 
values of the γ parameter. 
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Similar analysis is made in Fig. 4 for the case of Shw=1 and different values of the γ parameter. In this case the 
effect of the slope of the distribution coefficient γ on the mass separation is small compared to the case with Sherwood 
equal to 0.1. In both cases, for γ=0.1, the variation of the dimensionless average solute concentration is very close to the 
case of a constant distribution coefficient γ=0. However, for γ=1, it is verified an increase in the performance of the 
solute mass extraction in relation to γ=0. The Cav(z) distribution is higher in positions closer to the hollow-fiber inlet 
than for positions far from the inlet (higher axial lengths), consequently the distribution coefficient is lower leading to 
less efficient solute mass extraction for small axial lengths. In higher positions, the concentration Cav(z) diminishes, 
therefore, increasing values of the distribution coefficient and, as a consequence, the solute separation is intensified. It is 
clear from Figs. 3 and 4 that the solute mass extraction is more efficient for the case of Shw=1, due to the decrease in the 
mass transfer resistance of the solute in the fluid. 
 
 

 
 
Figure 4. Comparison of the average solute concentration along the dimensionless axial length for Shw=1 and different 

values of the γ parameter. 
 
 

Finally, Fig. 5 shows the analysis for the case of Shw=10. For higher values of Sherwood numbers, the variation in 
the concentration with axial length z is similar to the behavior expected for Sherwood infinity. It is also observed that 
with increasing z for positive and negative values of γ, it has been a decrease in the average solute concentration, 
however this decrease in Cav(z) is very close for negative and positive values of γ., indicating that the extraction is not 
influenced for this parameter. For γ=1, the Cav(z) concentration behaves almost identically to the case of γ=-0.9. The use 
of higher values of γ than 1 furnishes similar variations in the concentration Cav(z) along the membrane length that those 
obtained with Shw→∞. One can see from the comparison of Figs.3 and 4 with Fig. 5 for the behavior of Cav(z) 
concentration along the axial length, that the extraction of the solute is more efficient when the Sherwood number is 
closer to infinite values, as is the case for Shw=10. 

Also, from Figs. 3 to 5, comparisons with those results of Urtiaga et al. (1992) are shown, and excellent agreements 
are verified, this way furnishing a direct validation of the present methodology employed in the present work. 
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Figure 5. Comparison of the average solute concentration along the dimensionless axial length for Shw=10 and different 
values of the γ parameter. 

 
4. CONCLUSIONS 
 

A study of membrane extraction process of solute by using hollow-fiber supported liquid membranes (HFSLM) 
was developed in the present work. The mathematical modeling of physical problem was done through the equations of 
mass conservation of chemical species by considering variable solute distribution coefficient, which were solved 
through the Generalized Integral Transform Technique (GITT), which provided reliable and cost effective simulations 
for the considered cases. Also, it was verified that the present GITT solution was in an excellent agreement with that of 
Urtiaga et al. (1992), this way offering a direct validation of the present results. The analysis also shown that a variable 
distribution coefficient has important influence on the mass transfer separation in hollow-fiber mass transfer devices as 
the Sherwood number is less than 10 and the γ parameter greater than 1. Therefore, to predict the performance of a 
liquid membrane module, the variation of the distribution coefficient should be taken into account. 
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