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Abstract. Usually, the use of the Artificial Intelligence techniques for lifetime prediction is made by detecting visible – 

sometimes very small – degeneration in images of a cutting tool, which is supplied by a typical experiment in the 

turning process. In order to make visible small changes or degenerations in a cutting tool, this experiment tends to 

generate high-resolution images. As finding patterns in high-resolution images can be a hard task to all kind of 

Artificial Intelligence techniques, it is common apply some low-loss image compression techniques before using the 

images as input in the prediction process. In this work, we accomplished a comparative study between some of the most 

known wavelet functions in lifting-based low-loss image compression techniques. The wavelet functions of Haar, 

Daubechies, Biorthogonal, Coiflets and Symlets has been tested and the numerical results related to the quality of 

compressed images was measured in terms of distortion measures such as reconstruction error, Mean Square Error 

and Peak Signal-to-Noise Ratio. The objective is to define the best wavelet function for this specific application 

because it is known that the selection of proper mother wavelet is one of the important parameters of image 

compression. 
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1. INTRODUCTION 

 

In the last years, the use of Artificial Intelligence techniques as, for example, artificial neural network, to estimate 

tool’s lifetime in metal cutting process has been the aim of many researches (Alajmi et al., 2005; Patra et al., 2007; 

Chao and Hwang, 1997; Alajmi and Alfares, 2007). Usually, the lifetime is predicted by detecting visible – sometimes 

very small – degeneration in images of a cutting tool, which is supplied by a typical experiment in the turning process. 

In order to make visible small changes or degenerations in a cutting tool, this experiment tends to generate high-

resolution images. Finding patterns in high-resolution images can be a hard and time consuming task to the most 

artificial neural network approaches. So, in order to obtain relevant enhancement in patterns recognition performance, 

before using images as input cases in the neural network training processes, it is common to apply some low-loss image 

compression techniques. 

Wavelet decomposition is recognized as a powerful tool for image analysis and data compression. In fact, many 

works has shown how to use wavelets transform for creating data compression methods with great potential to compress 

large-scale, three-dimensional image data files, while keeping the most important information necessary to find patterns 

in the data. (Grgeć et al., 2000; Lo et al., 2003; O’Rourke and Stevenson 1995; Uhl, 1997). However, despite its good 

properties the numerical performance of the wavelet transforms can to be improved through the lifting technique. The 

lifting technique is a method introduced by W. Sweldens (1996), which allows to create an wavelet transform algorithm 

with smaller memory requirement and a reduced number of floating point operations, if long filters are used, keeping 

the efficiency of the technique (Sweldens, 1996; Daubechies and Sweldens, 1998). 

In this work, we accomplished a comparative study between some of the most known wavelet functions in lifting-

based low-loss image compression techniques for a cutting tool image. The families of wavelet function Haar, 

Daubechies, Biorthogonal, Coiflets and Symlets has been tested and the numerical results related to the quality of 

compressed images was measured in terms of distortion measures such as reconstruction error, Mean Square Error and 

Peak Signal-to-Noise Ratio. The objective is to define the best wavelet function for this specific application and, 

consequently, to provide a useful reference for helping to choose good wavelet compressions systems for applications 

involving cutting tool images. 

 

2. LIFTING TECHNIQUE 

 

Over the last few years, the mathematical analysis and the community of signal processing have created several 

algorithms of compactly supported wavelet. In fact, many other areas of science such as engineering, and mathematics 

have also contributed to the development of the wavelet field (Sarkar et al., 2002). Due to the different origins of 

wavelets, their properties and construction can be motivated and understood in different ways. Lifting technique is one 

of these ways and it has some structural advantages in relation to traditional approaches (Jensen and la Cour-Harbo, 

2001; Daubechies and Sweldens, 1998). 
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Daubechies and Sweldens (1998) have shown that every wavelet functions can be decomposed into lifting steps. 

Therefore, all data compression methods based on wavelet transforms can be implemented with the lifting scheme. The 

main advantages of this technique over the classical wavelet transform are (Daubechies and Sweldens, 1998): 

a) Smaller memory requirement – the calculations can be performed in-place; 

b) Efficiency: reduced number of floating point operations; 

c) Parallelism –inherently parallel feature; 

d) Easier to understand - not introduced using the Fourier transform; 

e) Easier to implement 

f) The inverse transform is easier to find – it has exactly the same complexity as the forward transform 

g) Transforms signals with an arbitrary length (need not be 2
n
 with n∈ℕ ); 

h) Transforms signals with a finite length (without extension of the signal). 

The basic idea of this technique is to exploit the correlation present in most real life signals to build a sparse 

approximation. In contrast to traditional approach, which relies heavily on the frequency domain, the lifting scheme 

derives all constructions in the spatial domain (Sweldens, 1996). This feature allows that the lifting algorithms can 

easily be generalized to higher dimensions and complex geometric structures. 

For a simple introduction of the lifting scheme we considered a finite signal of length 2 j , which is represented here as: 

1 2 3 2
s { , , , , }j

j j j j j
s s s s= …                                                                                                                                                  (1) 

The lifting scheme assumes that the numbers , 1, , 2j j

i
s i = … , are not randomly distributed, but contain some correlation 

between the sample and its neighbors. Then an odd sample 
2 1

j

k
s +  can use the average of its two even neighbors for its 

prediction. The detail 1j

k
d − is defined as the difference between the odd sample and its computed prediction (Jensen and 

la Cour-Harbo, 2001), as expressed by: 

1

2 1 2 2 2
( ) / 2j j j j

k k k k
d s s s−

+ += − +                                                                                                                                         (2) 

Therefore, if the sample and its neighbors have almost the same value, then the difference is of course small, and the 

prediction is good. 

To preserve the average value of the original signal the values of the difference are redistributed to the computed 

averages issued from the prediction phase. This operation is called update and is defined by (3). 

1 1 1

2 1
( ) / 4.j j j j

k k k k
s s d d− − −

−= + +                                                                                                                                           (3) 

This prediction and update steps are of order two. In this case, the prediction will be exact, if the original signal is 

linear and the update will preserve the average and the first moment. This idea is illustrated in Fig. 1. 

The procedure defined by (2) and (3) is only one example that can be used for constructing wavelet transforms and it 

is part of a large family of so-called biorthogonal wavelet CDF(2,2) transforms.  

 
 

Figure 1. Prediction is correct for a linear signal and the correction is the difference between the real middle sample 

value and its computed prediction. 

 

As another example of CDF transforms, which have been taken from (Cohen et al., 1992), the detail 1j

k
d − defined in 

the expression (2) above can be defined again as 

( )1 1 1

2 1 19 3 /8
j j j j

k k k kd s s s
− − −

+ += − +                                                                                                                               (4) 

in which, 

1

2 2 1

1

3

j j j

k k ks s s−
−= −                                                                                                                                                     (5) 

In all these examples of wavelet transforms each pair of prediction and update step is inverted separately, as 

illustrated in Fig. 3. It is known in the literature that the generalization of this procedure is crucial for application 
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purposes (Uyterhoeven, et al., 1997). In this generalization a prediction step is followed by an update step and by 

another prediction and update steps. In this approach the detail 1j

k
d − can be defined as (6) 

1~
1 3 1

,
2

j

j
kk

d d
−

− +
=                                                                                                                                                        (6) 

in which, 
1~

1 1

2 1 1

1 1
3 ( 3 2)

4 4

j
j j j

k k k kd s s s
−

− −
+ −= − − −                                                                                                                         (7) 

and 
1

2 2 1
3j j j

k k k
s s s−

+= +                                                                                                                                                        (8) 

The operations (6)-(8) are part of one step in the discrete wavelet transform based on Daubechies 4 filters. There are 

many other examples to build wavelet transforms and some of them can be found in (Uyterhoeven, et al., 1997). 

Overall, the direct lifting transform can be defined as 

1 1 1

-1 1 1

d ( )

 s (d )

j j j

j j j

odd P even

even U

− − −

− −

= −

= +
                                                                                                                                            (9) 

where P and U are, respectively, the prediction and update step and the entries js  are sorted into even and odd entries 

(of course, in effective implementations the entries are not separated). 

The prediction and the update lifting steps are shown in Fig. 2 and the direct and inverse lifting steps in Fig. 3. As 

can be observed from Fig. 3, the inverse transform is easily found by flipping the order of the operations and inverting 

its signs. This is an important structural advantage of lifting (Sweldens, 1996). 

 

 
 

Figure 2. Block diagram of prediction and update lifting steps 

 

 
 

Figure 3. Direct (left side) and inverse (right side) lifting steps 
 

 

2.1. Lifting-based low-loss image compression techniques 

 

In two-dimensional case the one-dimensional lifting process defined, for example, by the equations (6)-(8), are 

applied in the rows and columns of the matrix. In this case, the lifting transform generates a matrix formed by four types 

of coefficients: the approximation coefficients (A), the horizontal (H), the vertical (V), and the diagonal (D) details 

coefficients. These coefficients are called image sub-bands. The approximation coefficients keep the most important 

information of the matrix, whereas the details coefficients possess very small values, close to zero. Then, it is possible 

to choose a value of threshold and set to zero all the details coefficients that are below that value. As result, it is formed 

a low-loss version of the original image after accomplishing the inverse lifting transform. This decomposition process is 

part of a multiresolution approach and can be continued using the output approximation coefficients in the current level 

as an input signal in the next level. 
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To illustrate the lifting process an example of a single-level lifting decomposition, for a simple synthetic image, is 

presented in Fig. 4. In this Figure, the upper left plot shows the original image, which is based on a 128 128×  matrix 

where the entries with value 1 correspond to black pixels and all others entries have value zero. The coefficients 

obtained from a lifting transform with a Daubechies 2 wavelet are shown in upper right plot. The bottom left plot shows 

the inverse transform for each coefficient. In this case a component of the composition is selected, the other three 

components are replaced by zeroes and the lifting inverse transform is applied. The rebuilt image is presented in bottom 

right plot. 

 
 

Figure 4. Single-level lifting transform for a simple synthetic image. 

 

This example clearly shows the averaging, and the emphasis of vertical, horizontal, and diagonal lines, respectively, 

in the four components of the output image. In this example, no value of threshold has been used and the inverse lifting 

transform rebuilt the original image without any loss of information. In order to be able to see the details, the grey scale 

has been adjusted in each of blocks of the transform, such that the largest value in block corresponds to black and the 

smallest value in a block to white. 

 

3. Experimental Results 

 

This work accomplish a comparative study between some of the most known families of wavelet function in lifting-

based low-loss image compression techniques for a cutting tool image. The wavelets of Daubechies, Biorthogonal, 

Coiflets and Symlets have been tested and the numerical results related to the quality of compression are presented. The 

tests were accomplished using the high-performance language for technical computing MATLAB
®
. 

The low-loss image compression quality provided by these techniques was expressed in terms of the compression 

factor (ρ), the Mean Square Error (MSE) in approximating the original image U by its compressed version U’ and the 

Peak Signal-to-Noise Rate (PSNR) provided by the image compression process i.e., the ratio between the maximum 

possible component of U and the power of MSE (noise) that affects the fidelity of the approximation, as defined in Eq. 

(10)-(12). 

 
,

The total storage unit need to represet 

The total storage unit need to represet 

U

U
ρ = ,                                                                                                        (10) 
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=
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and the PSNR 
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We also presented the Rate vs. Peak Signal-to-Noise Ratio curves for the different wavelet functions tested in this 

work, which are shown in Tab. 1. The Rate is defined as the average number of bits per pixel in a compressed image 

(Lo et al., 2003). 
 

Table 1. Wavelet functions used in the numerical tests 

 

Families of wavelet functions 

Daubechies Coiflets and Symlets Biorthogonal 

db1 coif1 bior1.1 

db2 coif2 bior1.3 

db3 sym2 bior2.2 

db4 sym3 bior2.4 

db5 sym4 bior3.1 

db6 sym5 bior3.3 

db8 sym6 bior4.4 

 

The original cutting tool image used in the tests is presented in Fig. 5. Details related to the memory request for this 

image are shown in the second row of the Tab. 2. 

Three values of compression rate were previously selected and the resulting compressed images were analyzed by 

comparing distortion measures mentioned above. These experimental results are shown in Tab. 2-4. Table 2 presents the 

results for a compression rate of, approximately, 0.190. The compression rate is defined as 1 - compression factor, 

which is calculated as (10). 

 

 
 

Figure 5. The original 768x576 pixel cutting tool image (Tagged Image File Format - TIFF) 

 

Tables 3 and 4 present similar results with compression rates of 0.405 and 0.919, respectively. However, in this case 

only the best cases (higher PSNR) are presented. For compression rate of 0.919, only three wavelet functions produced 

acceptable results (Table 4). Is important to note that the Lifting technique with Biorthogonal wavelet bior1.1 and with 

the Daubechies wavelet db1 are numerically the same. The same is true for Daubechies wavelet db2 and Symlet wavelet 

sym2.  

The corresponding compresses images for some of these cases are illustrated in Fig. 6. 
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Table 2. Results for different wavelet functions in Lifting-based low-loss image compression techniques (compression 

rate of approximately 0.190) 

 

 Image 

compression 

technique 

Memory 

request 

Compression 

factor (ρ) 

Compression 

Rate (1 - ρ)  

PSNR  

(decibels-dB) 

 
Original 

Image 
430276 - - - 

Lifting db1 348523 0.810 0.190 48.22 

Lifting db2 350503 0.814 0.185 43.94 

Lifting db3 352740 0.819 0.180 44.19 

Lifting db4 350890 0.815 0.184 43.90 

Lifting db5 349169 0.811 0.188 42.84 

Lifting db6 349956 0.813 0.186 37.80 W
a
v
el
et
s 
o
f 

D
a
u
b
ec

h
ie
s 

Lifting db8 348544 0.810 0.190 30.99 

Lifting coif1 347706 0.808 0.191 12.33 

Lifting coif2 349599 0.812 0.187 28.11 

Lifting sym2 350503 0.814 0.185 43.94 

Lifting sym3 348781 0.810 0.189 44.23 

Lifting sym4 352740 0.819 0.180 45.01 

Lifting sym5 348308 0.809 0.190 44.66 W
a
v
el
et
s 
o
f 

C
o
if
le
ts
 a
n
d
 

S
y
m
le
ts
 

Lifting sym6 348480 0.809 0.190 17.64 

Lifting bior1.1 348523 0.810 0.190 48.22 

Lifting bior1.3 349298 0.811 0.188 45.64 

Lifting bior2.2 350201 0.813 0.186 43.37 

Lifting bior2.4 350072 0.813 0.186 43.72 

Lifting bior3.1 348566 0.810 0.189 26.58 

Lifting bior3.3 348910 0.810 0.189 38.45 B
io
rt
h
o
g
o
n
a
l 

w
a
v
el
et
s 

Lifting bior4.4 350847 0.815 0.184 43.67 

 

 

Table 3. Results of Lifting-based low-loss image compression techniques for compression rate of approximately 0. 4050 

 

Image 

compression 

technique 

Memory 

request 

Compression 

factor (ρ) 

Compression 

Rate (1 - ρ)  

PSNR  

(decibels-dB) 

Original Image  430276 - - - 

Lifting db1 256875 0.597 0.403 38.42 

Lifting db2 256229 0.595 0.404 27.97 

Lifting sym2 256229 0.595 0.404 27.97 

Lifting sym5 256014 0.595 0.405 27.62 

Lifting bior1.1 256875 0.597 0.403 38.42 

Lifting bior1.3 256100 0.595 0.405 35.83 

 

 

Table 4. Results of Lifting-based low-loss image compression techniques for compression rate of approximately 0.919 

 

Image 

compression 

technique 

Memory 

request 

Compression 

factor (ρ) 

Compression 

Rate (1 - ρ)  

PSNR  

(decibels-dB) 

Original Image  430276 - - - 

Lifting db1 34852 0.081 0.919 25.87 

Lifting bior1.1 34852 0.081 0.919 25.87 

Lifting bior1.3 36573 0.085 0.915 25.45 
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Lifting db1 (compression rate of 0.190) 

 
Lifting bior1.3 (compression rate of 0.188) 

 
Lifting db1 (compression rate of 0.403) 

 
Lifting bior1.3 (compression rate of 0.405) 

 
Lifting bd1 (compression rate of 0.919) 

 
Lifting bior1.3 (compression rate of 915) 

 

Figure 6. Compressed image corresponding to the two best cases (higher PSNR) from Tables 2, 3 and 4 

 

Finally, the Rate vs. Peak Signal-to-Noise Ratio curves for all wavelet functions tested are presented in Fig. 7. 

Figure 7 presents the results separate in sets of wavelet functions. Figures 7a, 7b and 7c show the curves for 

Daubechies, Coiflets and Symlets, and Biorthogonal wavelets, respectively. The Rate vs. Peak Signal-to-Noise Ratio 

curves for the six best cases are presented in Fig. 7d. 
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(a) (b) 

  
(c) (d) 

 

Figure 7. Rate vs. Peak Signal-to-Noise Ratio curves for all wavelet functions tested: (a) Daubechies wavelets, (b) 

Coiflets and Symlets wavelets, (c) Biorthogonal wavelets and (d) the six best cases in (a), (b) and (c). 

 

4. CONCLUSIONS AND COMENTS 

 

In this paper a comparative study between some of the most known families of wavelet function in lifting-based 

low-loss image compression techniques for a cutting tool image has been presented. The objective is to define the best 

wavelet function for this specific application because it is known that the selection of proper mother wavelet is one of 

the important parameters of image compression. The wavelets of Daubechies, Biorthogonal, Coiflets and Symlets have 

been tested and the numerical results related to the quality of compression were presented. The results demonstrate that, 

in general, the db1 (or bior1.1) and bior1.3 perform significantly better for all the compression rates. In fact, if an 

aggressive thresholding is applied for get high values of compression rate the wavelets of db1 (or bior1.1) and bior1.3 

are the only choices for the tested case, as shown the results in Tables 3 and 4. However, if a low compression rate is 

sufficient it is possible to use the Daubechies wavelets db2, db3, db4 and db5 as well as the Symlet wavelets (sym2, 

sym3, sym4 and sym5) or the Biorthogonal wavelets (bior2.2, bior2.4 and bior4.4). On the other hand, the Coiflets 

wavelets and the wavelets db6, db8, sym6, bior3.1 and bior3.3 are not the best choice for this application. These results 

are summarized in Fig. 7 which presents the Rate vs. Peak Signal-to-Noise Ratio curves for all wavelet functions used 

in this work. 
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