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Abstract. : This paper presents results of a numerical simulation of the laminar flow over a NACA 0012 airfoil. Its goal is
to observe the dynamic stall phenomena. Recurring phenomena linked to the flow over moving boundaries are transition
to turbulence, boundary layer separation and dynamic stall. Among these informations, numerical simulation of the flow
profile is a suitable tool to acquire knowledge over the mentioned phenomena. A finite element code will be employed to
conduct the numerical simulation. An explicit projection method will be employed at the simulation, with P1 triangular
grid elements. Also, this work will employ the CBS stabilization scheme. In a first approach, the airfoil will be simulated
in a static condition to assess the lift acting on the airfoil, and compare it with experimentation. Thus, the airfoil will
be submitted into an oscillating pattern in order to observe the dynamic stall. For the moving boundary, an Arbitrary
Eulerian Lagrangean (ALE) scheme will be employed to contemplate mesh deformation. The ALE method has the ability
to control mesh geometry independently from material geometry. The results obtained will be showed with velocity vectors
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1. INTRODUCTION

Flows over moving boundaries are common in engineering. Flame propagation, oil recovery, runners and vanes of
turbomachines, keels of boats, dam ruptures and explosions are examples (Shyy et al. (2008)). On bioengineering one
can count the blood flow at veins and arteries and airflow inside the lungs as example of this kind of flow. Here, the
moving boundary and the flow can influence each other’s mechanics, causing vibration or strains in solids, or generating
instabilities that can lead to turbulence in fluids. Besides, chemical processes, phase changing can be fitted inside this kind
of flow. Usually, the moving boundary is considered, under the continuum mechanics point of view, as a discontinuity,
which can generates to grid generation problems. The Dynamic stall can be characterized by an airfoil oscillating in
pitching or plunging motion. If the angle of attack of the airfoil surpasses the stall angle, a large gain in lift is observed,
with increases in drag and negative moments are applied by the flow into the airfoil. The flow separation is delayed, due
to the time scale differences between inviscid and viscous phenomena. Its effects can be seen in aerodynamics, hydro
and wind turbines, helicopter rotors and aircraft engines. Recurring phenomena in dynamic stall are: unsteady separation,
shear layer instabilities and shock-boundary layer interaction (Digavallis (1993)). There are several numerical methods
to study this kind flow, such as SPH (Smooth Particle Hydrodynamics), VOF (Volume of Fluid), Immersed Boundary
method and the Arbitrary Lagrangean-Eulerian method (Duan and Li, 2007), which will be used in this paper.

On a very simple definition, the finite element method is a method that works with local base functions, which are
multiplied by weight functions and integrated over a domain ((Zienkiewicz, 2005a, Franca et al.,2006, Donea and Huerta,
2003). Its main advantages are the applications to complex geometries, easy implementation of interpolation schemes
and its solid mathematical foundations. On the other hand, its main challenge is the determination of a weak form of the
problem that accurately represents the strong form of the same problem, as well as the insurance of stabilization of the
advective term in fluid mechanics applications. One example of stabilization scheme is the CBS (Characteristic Based
Split) method (Pereira, 2004, Zienkiewicz, 2005b). One can state that the CBS method uses features of projection methods
and characteristic methods. The stabilization is achieved by splitting the pressure terms of the Navier-Stokes equation,
considering it as a source term. Therefore, it is calculated apart from the remaining terms of the equation.

This paper will perform a numerical simulation of the laminar flow over the oscillating NACA 0012 airfoil with the
ALE method to contemplate the moving airfoil. An in-house finite element code will be employed for the calculations.
Results of the simulation for several angles of attack in a static fashion will be showed. The lift coefficient will be
calculated and compared with experimentation for the attack angles. For the dynamic airfoil movement, qualitative results
of the flow with the oscillating airfoil will be presented in order to characterize the dynamic stall pattern.
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2. MATHEMATICAL FORMULATION

Let us consider a time dependent laminar and incompressible fluid flow problem described as follows: Find the velocity
and pressure fields u(x, t) and p(x, t) defined in Ωt × [0, T ], where Ωt is a bounded open subset of Rd (d=2 or 3) with
boundary Γt = ∂Ωt, varying both on time, such that:

∇.u = 0 (1)

∂u
∂t

+ (∇u)u = −1
ρ
∇p + ν∇2u + f (2)

In these equations ρ and ν denote the density and viscosity of the fluid and f is a given forcing function.
Taken into account the time-dependency of Ωt, the Arbitrary Lagrangian-Eulerian (ALE) approach is used in order

to describe flow variables in a context of moving domains. Let χt a invertible mapping function which for all t mapps a
point X ∈ Ω0 to a point x = χt(X) ∈ Ωt, with:

χt : Ω0 7→ Ωt;
X 7→ x = χt(X) (3)

The domain velocity is computed using χt as follows:

w(x, t) =
∂χt

∂t

∣∣∣∣
x

(x, t) (4)

Considering now the ALE mapping, for any function f : Ωt 7→ R the material derivative can be written as:

df

dt

∣∣∣∣
x

=
∂f

∂t
(x, t) + w(x, t).∇f(x, t) (5)

Finally, the continuity and momentum laws are reformulated in a referencial description, transformed the original
problem (1)-(2) to: Find the velocity and pressure fields u(x, t) and p(x, t) defined in Ωt × [0, T ], such that:

∇.u = 0 (6)

∂u
∂t

+ (∇u)û = −1
ρ
∇p + ν∇2u + f (7)

to those equations û = u−w denote the relative fluid velocity and initial conditions are added:

u(x, 0) = u0 ; p(x, 0) = p0 in Ω0 (8)

and the boundary conditions are defined on Γt = Γd ∪ Γw,t ∪ Γo as:

u(x, t) = ud; on Γd (9)

u(x, t) = w; on Γw,t (10)

p(x, t) = pref; on Γo (11)

For those conditions Γd represents the part of the boundary which is maintained fixed on time and where Dirich-
let boundary conditions for the velocity field are prescribed. Γw,t is the moving boundary, where the fluid velocity is
equivalent to the domain velocity. Γo is the outlet boundary where a reference pressure is prescribed (see Fig. 1).

Remark: In the present work the domain kinematic is defined only from the motion of one part of the boudary Γw,t

(related to the tilting of airfoil). The prescribed motion of the moving boundary defines the geometrical motion of the
domain (mapping function χt) as well as its local velocity (w(x, t)). It can be expressed by a mathematical problem: Find
x(X, t) such that:

L(x) = 0 (12)

with boundary conditions prescribed on Γw,t as x = xw. L(.) denotes a mathematical operator related to the mapping χt

due the domain deformation.
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Figure 1. Moving domain with an oscilating airfoil

3. Numerical Methods

3.1 Time Discretization - Projection Algorithm

The present methodology is designed for the semi-explicit iterative solution of system (6)-(7) after time and spatial
discretization, considering a framework of projection methods (e.g. Chorin (1968), Guermond et al. (2006), Goldberg
and Ruas (1999), Lohner et al. (2006)).

Let ∆t > 0 be a given time step. Considering the set of variables known in a previous time step t, denoted by
(un, pn,xn,wn), the solution at time t + ∆t, (un+1, pn+1,xn+1,wn+1) can be obtained from the following splitting
approach:

1
∆t

(u∗ − un) + (∇un)ûn = −1
ρ
∇pn + ν∇2un + f (13)

1
∆t
(
un+1 − u∗) = −1

ρ
∇(pn+1 − pn) (14)

∇.un+1 = 0 (15)

L(xn+1) = 0 ; wn+1 =
1

∆t
(
xn+1 − xn

)
(16)

The fractional-step algorithm introduces a predicted velocity u∗, which is corrected on the end of steps.
Taking the divergence of the equation (14) and using (15) the pressure-Poisson equation can be obtained:

∇2
(
pn+1 − pn

)
=

ρ

∆t
∇.u∗ (17)

The boundary conditions for this equation has to be considered as follows:

∇
(
pn+1 − pn

)
.n =

ρ

∆t
u∗.n on Γ (18)

Remark: The projection algorithm used here is called Incremental Projection Scheme. It is a modification of the classical
version proposed by Chorin (1968). This implementation improve the convergence properties as reported in literature
(Guermond et al. (2006) , Codina (2000)).

3.2 Standard Weak Form

As usual, we denote L2(Ωt) the space of functions that are squared integrable over the domain Ωt and H1(Ωt) the
Sobolev space whose the derivatives are also squared integrables. A bold character is used for vector-valued functions of
those spaces. The L2(Ωt) internal product is denoted by (., .) =

∫
Ωt
.. dΩt and H1

0 (Ωt) is the sub-space of function with
zero value on boundaries.

Given weight functions v ∈ V = H1
0 (Ωt) and q ∈ Q = L2(Ωt)/R. Considering also u ∈ U = H1(Ωt). The weak

form of the equations (13), (17) and (14) can be written as follows:

m(∆u∗,v) + c(un, ûn,v) + ν a(un,v) +
1
ρ
b(p,v) = (f ,v) (19)
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a(∆p, q) = − ρ

∆t
b(u∗, q) (20)

m(∆un+1,v) = −1
ρ
b(∆p,v) (21)

where the following forms are introduced

m(u,v) :=
1

∆t
(u,v) ; c(u,w,v) := ((∇.u)w,v) (22)

a(u,v) := (∇u,∇v) ; b(q,v) := (q,∇.v) (23)

The increments of velocity and pressure fields at each spliting step are denoted by ∆u∗ = u∗ − un , ∆un+1 =
un+1 − u∗ and ∆p = pn+1 − pn.

Remark: The proposed methodology is based in a fractional-step scheme with a simple first order discretization on time.
The incremental solution at each time step of the equations (19)-(21) leads to the consistent formulation for the fields at
t + ∆t. In a framework of ALE method, the problem has to be complemented by the kinetic formulation of the moving
domain. It will be dicussed later.

3.3 Finite Element Discretization

Let Th(Ωt) a regular partition of the domain Ωt from which the finite element spaces Qh ⊂ Q, Vh ⊂ V and
Uh ⊂ U are constructed. The discrete problem equivalent to the weak form can be written as: Given {un

h, p
n
h,w

n
h}, find

{un+1
h , pn+1

h } ∈ Uh ×Qh such that ∀ {vh, qh} ∈ Vh ×Qh:

m(∆u∗
h,vh) = −c(un

h, û
n
h,vh)− ν a(un

h,vh)− (24)

−1
ρ
b(ph,vh)− s(un

h, û
n
h,vh) + (f ,vh) (25)

a(∆ph, qh) = − ρ

∆t
b(u∗

h, qh) (26)

m(∆un+1
h ,vh) = −1

ρ
b(∆ph,vh) (27)

An extra term is added to the discrete form (25), to assure the stability for convection dominated regimes. This term
is given by:

s(un
h, û

n
h,vh) = ((∇un

h)ûn
h,∆t(∇v)ûn

h) (28)

Considering the dimension of the spaces given by dim(Vh) = dim(Uh) = dim(Qh) = N and base function respec-
tivelly denoted by {Ni; i = 1, N} and {Ni; i = 1, N}, the matrix form of the discrete problem are written as:

Step 1: Predict velocity by Momentum equation

M.∆u∗
h = F∗

u(un
h,w

n
h , p

n
h) (29)

Step 2: Pressure-Poisson problem

A.∆ph = Fp(u∗
h) (30)

Step 3: Velocity correction - Projection in divergence free space

M.∆un+1
h = Fu(∆ph) (31)

In those equations M and A are the mass and discrete Laplacian matrices given by:

Mij =
1

∆t
(Ni,Nj) ; Ai,j = (∇Ni,∇Nj) (32)

The vectors F∗
u, Fp and Fu are related to the discretization of the right hand side of the matrix equations on the steps

1-3. The boundary integral terms (related to the boundary conditions) are added into these vectors.

Remarks:



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

• The solution of the linear systems at steps 1 and 3 involve the mass matrix. In order to enhance the convergence rate
of the computations, this matrix is lumped in a diagonal form. It is performed once in the beginning of the iterative
computation.

• The linear system for the pressure correction problem, step2, is solved by the Conjugated Gradient Method, precon-
ditioning by partial Cholesky factorization. This matrix is stored by a space Morse strategy, and the preconditioning
is also performed once when this matrix is firstly computed.

• In the present paper the time step is controlled by the following expression:

∆t 6
∆tadv∆tdiff

∆tadv + ∆tdiff
(33)

3.4 Moving Mesh Methodology

The governing equation of the motion of the fluid mesh is built considering the fluid mesh as a pseudo-elastic structure
(Batina(1991), Koobus et al.(1998), Degand and Farhat(2002), Farhat et al.(1998))

L(x) = Mẍ+ Cẋ+ Kx− R (34)

where M, C and K are respectively the fictitious mass, damping and stiffness matrices associated to the fluid grid and
R is the reaction force. For a quasi-static model the fictitious mass M and damping C matrices are neglected, resulting in:

L(x) = Kx− R (35)

The quasi-static approach, due to its simplified structure and solution strategy, is usually preferred for the modeling
of fluid-structure interaction problems. The quasi-static fluid mesh motion equations obey the kinematic compatibility
between fluid and structure. The kinematic compatibility dictates how the position xΓ of fluid mesh on the boundary Γ is
related to the fluid mesh boundary velocity vΓ by:

xΓ = ∆tvΓ (36)

where ∆t is fluid problem time step. For this problem the fluid mesh boundary points have a uniform rotation move-
ment of radius r with respect to a specified center point. Therefore, the fluid boundary moves as if there was a rigid
structure rotating with a constant angular velocity ω.

vΓ = ωr (37)

The fictitious stiffness matrix K and the reaction force vector R in equation can be divided in subsets related to the
internal (Γ) and external (Ω) degrees of freedom of the fluid mesh:[

KΩΩ KΩΓ

KΓΩ KΓΓ

] [
xΩ

xΓ

]
−
[

RΩ

RΓ

]
= L(x) (38)

Equation 5 is solved with the condition of null force on the internal grid points (RΩ = 0). Also, in this work for the
fluid mesh motion problem, a quasi-static model is used as described in equation 2, and the fictitious stiffness matrix K is
constructed by an improved spring analogy method (Koobus et al.(1998)). As the main goal is to deal with fluid-structure
interaction problems of small to medium scale, the solution strategy employs a direct method to solve the mesh motion
linear system of equations. The direct method is preferred because of its simplicity and robustness.

3.5 Boundary Conditions

At the inlet, the velocity was set to match a Reynolds number of 103. The outlet boundary condition has a zero
reference pressure, and the airfoil wall was imposed the mesh velocity, in order to recover a fluid velocity equal to zero at
the ALE equations. The used grid has 1761 nodes and 3198 P1 elements. In the static case, the NACA 0012 airfoil were
simulated in several angles of attack to validate the flow pattern and the vertical force coefficient. In the dynamic case, the
airfoil is pitched up to 20 degrees and then, pitched down to 7 degrees, in order to observe the flow pattern of the dynamic
stall.

The lift coefficient is the non-dimensional lift force, given as follows (Naudascher and Rockwell (2005)):

Cl =
Fl

0.5ρu2A
(39)
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Where A is the airfoil surface area, calculated with the element face that composes the airfoil surface. The used grid
is displayed in figure 2

Figure 2. Discretization detail and Deformed mesh

4. RESULTS

4.1 Static Airfoil

The results obtained for the static simulation shows that the developed code was able to predict the lift coefficient
with good precision below 8 degrees of attack angle (Figure 3). Above that angle, the results start to overestimate, when
compared with the experimental results present in Naudascher and Rockwell (2005). One can state that this overestimate
is due to stall effects, since the NACA 0012 has its normal stall around 10 degrees for the Reynolds Number used for
this work. At this condition, boundary layer detachment occurs due to pressure gradients originated by the angulation of
the airfoil. Also, in laminar flow, coherent structures can be emitted from the airfoil in a high attack angle. The velocity
vectors at figures 4 and 5 shows that trend. At 8 degrees, recirculation zones appears close to the airfoil’s trailing edge.
Those zones begin to grow and generate a vortex wake downstream at the subsequent higher angles, where at 20 degrees
the wake and the recirculation zone begin to shows signs of instability due to the gradient pressure generated by the airfoil
angulation. These patterns are observed at the reference, where the 12 degrees display can be fitted into a light stall, where
a separation bubble is noted at the leading edge and the flow is separated close to the trailing edge. The 20 degrees vector
display shows similarity with a deep stall regime, where a big recirculation zone is noted, and vortex wake is generated
downstream (Svacek et al. (2007)).

Figure 3. Static Lift Coefficient Curve
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Figure 4. Velocity Vectors and Pressure Contours at 16 degrees

Figure 5. Velocity Vectors and Pressure Contours at 20 degrees

4.2 Moving Airfoil

The velocity vectors and pressure contours showed in figures 6, 7 and 8 shows the dynamic stall pattern. The flow
topology bears close similarity with the visualization results displayed at Naudascher and Rockwell (2005) and Svacek
et al. (2007). In a pitching airfoil condition where the angle of attack increases, the boundary layer is fully attached at
the lower surface of the airfoil, while the upper surface shows that the separation point moves upstream (figure 6). The
presented flow topology is a free shear layer wake at the trailing edge, while the vorticity assumes a counterclockwise
shedding pattern, which is consistent with the increasing airfoil circulation. One can note that on this phase of increasing
angle of attack, the separation point remains moving upstream, until it reaches the leading edge (Digavallis (1993),
Fujisawa and Shibuya (2001)). The shear layer at the upper surface rolls up, configuring the dynamic stall pattern,
identified by a primary vortex formed. This vortex became bigger as it departs from the airfoil to, finally, detaches
itself. At that moment, the shear layer that is emitted from the trailing edge gains force, to generate the counterclockwise
shedding mentioned before. At that moment, the normal force reaches its maximum value. When the angle of attack
starts decreasing (figures 7, 8 and 9). The primary vortex moves downstream and the separation point moves toward the
trailing edge, where the vortex is drifted downstream and a negative vorticity is generated by a shear layer modified by the
down-pitching ((Digavallis (1993), Ekaterinas and Platzer (1997)). This vorticity is shed from the trailing edge . At the
pitching down, the boundary layer reattaches to the airfoil’s upper surface. Figure 10 shows the dynamic lift coefficient
curve. The data displayed on this curve has resemblance from figure 2, which displays static data. One can notice the
quasi-hysteretic behavior of the lift, where the pitching down curve shows more variation on the lift when compared with
the pitching up curve. One can note that turbulence and compressibility effects affects the dynamic stall. In turbulence, the
flow pattern resembles the laminar pattern, while in compressible flow, a supersonic region is developed over the airfoil,
which is halted by a normal shockwave that interacts with the boundary layer.
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Figure 6. Velocity Vectors and Pressure Contours at 18 degrees pitching up

Figure 7. Velocity Vectors and Pressure Contours at 20 degrees pitching down

Figure 8. Velocity Vectors and Pressure Contours at 16 degrees pitching down
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Figure 9. Velocity Vectors and Pressure Contours at 10 degrees pitching down

Figure 10. Dynamic Lift Coefficient Curve

5. CONCLUSIONS

Results of a finite numerical simulation of the laminar flow over an static and dynamic NACA 0012 airfoil were
presented. Velocity vectors for observing flow topology and numerical-experimental comparing on the vertical force
coefficient were performed.

The static case showed the typical airfoil flow pattern, where the vertical force coefficient was well predicted for angles
below 8 degrees. For angles above that value, the numerical results are overestimated when compared with experimen-
tation. The normal stall effects can explain that slight overestimation, since on that flow state, forces are influenced by
the stall phenomena. The dynamic case had shown qualitative results of velocity vectors. Those results hold resemblance
with experimental flow visualization available at the literature. Flow effects, such as vortex shedding, recirculation zones
formation and shear layer shedding were observed.

The obtained results can be considered as good, but further analysis is needed for the characterization of the dynamic
stall. In the future, moment coefficient values are intended to be calculated, and analysis of the damping effect of the flow
on the airfoil will be analyzed.
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