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Abstract. Neural networks represent a more general regression method, which gives better results than linear 

regressions. It is a powerful tool especially for problems that do not have a completely accepted physical model, such 

as many problems encountered in materials sciences. The tempering process aims to get the microstructures that lead 

to service mechanical properties and, to promote the relaxation of the residual stresses generated during quenching. 

The goal of this work is to predict the effect of tempering time and temperature on some steels properties by means of 

neural networks. Five types of steels, AISI 5160, AISI 6150, AISI E52100, AISI 4140 and AISI 4340, were tempered in 

different conditions. The inputs of the neural network are the chemical composition and the tempering time and 

temperature; the outputs are the tensile strength, the rupture stress, the modulus of elasticity and the hardness. 
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1. INTRODUCTION  

 

During tempering of quenched steels, changes on microstructure are produced over a wide range, resulting in 

corresponding changes in mechanical properties. The tempering process is dependent of the relation time-temperature. 

The selection of these process parameters affects temper embrittlement, non-optimal stress relief, hardness, tensile 

strength, yield strength and transformation of retained austenite.  

This relation has been already reported by Hollomon and Jaffe (1945), when they noticed that the same hardness 

could be reached by different time-temperature histories. In this work they have obtained a relation between hardness 

(H) and a tempering parameter (c), as follows on Eq.(1): 

 

    f(H)=f[T(c+logt)]                   (1) 

 

 As they had worked only with plain carbon steels, many authors had suggested that this model do not fit well all 

types of steel, a review of the development of the tempering parameters development has been reported by Canale, et.al. 

(2006). Grange and Baughman (1956) suggested C=18 for all carbon steels. Nehrenberg (1950) used C=20, and 

developed tempering curves for a series of stainless steels. An example of the use of neural networks to the same 

proposal was made by Filetin et al. (1999), but their work has focused only on tempering curves, namely hardness of 

tool steels. The aim of this work is to calculate hardness, tensile strength, rupture stress and the Young’s modulus for 

five alloyed steels, tempered in different conditions of time and temperature by means a simple neural network. 

Heat treatment of materials is a fundamental metallurgical process, which involves very complex and nonlinear 

phenomena. In this way, physical models are difficult or impossible to obtain. In such cases neural networks seems to 

be a powerful tool. Mackay (1997) has defined neural networks as a general method of regression analysis in which a 

flexible non-linear function is fitted to experimental data. 

 

 

2. EXPERIMENTAL PROCEDURE 

 

The samples were austenitized at 850ºC, and quenched in a mineral oil. Figure 1 shows the specimen, which one 

were machined following the ASTM E8M Standard (tensile testing). Three specimens were tempered at specified time 

and temperature, and cooled in air. The selected temperatures were 100, 150, 200, 250, 300, 400, 500, 600 and 700ºC. 

During tempering process the furnace temperature varied ±10ºC. The time on each temperature was 10s, 90s, 900s, 

9000s and 86400s. According to ASTM E8M Standard each condition test must have reproducibility equal 3, so there 

were tested 675 samples. Table 1 shows the chemical composition of five types of steel used in this work. 
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Figure 1: Specimen following the ASTM E8M standard for tensile testing. 

 

Table 1: Chemical Composition of tested steel. 

 

Steel %C %Mn %P %S %Si %Ni %Cr %Mo 

AISI 4140 0.41 0.88 0.016 0.018 0.23 - 1.02 0.22 

AISI 4340 0.39 0.75 0.019 0.016 0.26 1.74 0.79 0.26 

AISI 5160 0.62 0.88 0.012 0.018 0.22 - 0.79 - 

AISI 6150 0.51 0.81 0.021 0.014 0.28 - 0.98 - 

AISI E 52100 1.02 0.40 0.017 0.014 0.23 - 1.42 - 

 

After quenching and tempering the samples was submitted to tensile test performed in a universal MTS machine 

with a load of 100KN and extensometer of 25mm. The strain rate was set to 0.8 mm/min. So it was measured the 

superficial hardness in the head of each specimen. Five hardness measurements were collected using a LECO RT-240 

durometer, with a load of 150kgf. As it was obtained a large amount of data it were decided to present here only the 

results used o test the neural network either for tensile test as for hardness. Figures 2 to 6 show the stress-strain curves 

obtained for ten conditions picked out randomly of the set. Figure 2 (a) shows the stress-strain (σ-ε) curve obtained for 

the AISI 4140 steel tempered for 9000s at 250ºC, while Fig. 2 (b) shows the curve for the same steel tempered for 10s at 

700ºC. In common sense lower time on temperature should provide a curve with a brittle behavior, but as it can be seen 

in this figure at higher temperatures it is not the rule. 
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AISI 4140 - 700ºC - 10s
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Figure 2: Stress-strain curve for AISI 4140 steel tempered for (a) 9000s at 250ºC and (b) 10s at 700ºC. 

 

Figure 3 shows the stress-strain curves obtained for AISI 4340 steel that was heat treated for 900s at 300ºC (Fig. 3 

(a)) and for 90s at 400ºC (Fig. 3 (b)). In Fig. 4 (a) it can be observed the tensile curve for an AISI 5160 tempered for 

86400s at 100ºC, and Fig. 4 (b) 900s at 400ºC. The data obtained for AISI 6150 steel is showed by Figure 5 (a) 9000s at 

150ºC, and Figure 5 (b) 90s at 500ºC. Figure 6 shows the curves picked out for the AISI E52100 steel, tempered for 

56400s at 200ºC, Fig. 6 (a), and for 10s at 600ºC on Fig. 6 (b). Table 2 shows the mean superficial hardness of the five 

measurements for the test set. 
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AISI 4340 - 400ºC - 90s
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Figure 3: Stress-strain curve for AISI 4340 steel tempered for (a) 900s at 300ºC and (b) 90s at 400ºC. 
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AISI 5160 - 100ºC - 86400s
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(b) 

AISI 5160 - 400ºC - 900s
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Figure 4: Stress-strain curve for AISI 5160 steel tempered for (a) 86400s at 100ºC and (b) 300s at 400ºC. 
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(b) 

AISI 6150 - 500ºC - 90s
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Figure 5: Stress-strain curve for AISI 6150 steel tempered for (a) 9000s at 150ºC and (b) 90s at 500ºC. 
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AISI E52100 - 200ºC - 86400s
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(b) 

AISI E52100 - 600ºC - 10s
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Figure 6: Stress-strain curve for AISI E52100 steel tempered for (a) 86400s at 200ºC and (b) 10s at 600ºC. 
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Table 2: Superficial hardness for test set. 

 

Steel Tempering Condition Hardness [HRc] 

9000s at 250ºC 57.0 
AISI 4140 

10s at 700ºC 49.8 

900s at 300ºC 54.9 
AISI 4340 

90s at 400ºC 48.6 

86400s at 100ºC 56.4 
AISI 5160 

900s at 400ºC 43.0 

9000s at 150ºC 49.1 
AISI 6150 

90s at 500ºC 42.9 

86400s at 200ºC 49.9 
AISI E52100 

10s at 600ºC 51.2 

 

 

3.NEURAL NETWORKS 

 

Four feed forward networks were built with chemical composition, tempering temperature and time on temperature 

as inputs and, tensile strength, rupture stress, modulus of elasticity and hardness as outputs of each neural network. It 

was decided to work with one network for each output due to small amount of data available, so that it would be 

possible to reduce the number of free parameters and improve generalization. The activation function was set as a 

tangent hyperbolic function as shown in Eq. (2) in the hidden layers, while a linear function was used for the output 

layer as shown in Eq. (3): 

 

( )∑ += ijiji xwh θtanh             (2) 

 

  ∑ += ijihwy θ              (3) 

 

where xj are the inputs and wij are the weights, which define the neural network. The biases θi are treated internally as 

weights associated with a constant input set to unity.  

To train the neural network was used the MATLAB function traingdm, which combines adaptive learning rate with 

momentum training. The initial learning rate was set at 0.01 and the momentum at 0.9. The network was trained until 

15000 epochs. Many network architectures were tested until to find the best configuration. It was verified that a neural 

network with two hidden layers with six and ten neurons respectively, was that one that promoted the best fit for the 

output layer. Each neural network had 10 inputs and just one output. The range, mean and standard deviation of input 

data are listed on Table 3. 

Table3: Input data. 

 

Input variables Min. Max. Mean Standard deviation 

Temperature [ºC] 99 703 382.7 196.3 

Time [s] 10 86400 20075 33684 

%C 0.39 1.02 0.597 0.232 

%Mn 0.4 0.88 0.739 0.180 

%P 0.012 0.021 0.017 0.003 

%S 0.014 0.018 0.016 0.002 

%Si 0.22 0.28 0.244 0.023 

%Ni 0 1.74 0.361 0.707 

%Cr 0.79 1.42 0.99 0.235 

%Mo 0 0.26 0.0914 0.118 

 

 

To avoid the overfitting problem the Bayesian regularization was used. This method consists in modifying the 

performance function, Eq. (4), which is normally chosen to be the sum of squares of the network errors on the training 

set. The function is modified by adding a term (Eq. (5)) that consists of the mean of the sum of squares of the network 

weights (msw) and biases in the original function. It causes the network to have smaller weights and biases and, this 

forces the network response to be smoother and less likely to overfit. The new performance equation corresponds to Eq. 

(6). 
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where N is the number of samples, t the desired output, a the value calculated by the neural network and γ  the 

performance ratio. 

The data set was obtained experimentally as shown on section 2. It was divided between training set and test set. 

The training set was composed of 225 conditions and the test set of 10 conditions picked out randomly from training 

set. 

 
4. RESULTS AND DISCUSSION 

 

After the training section the final error obtained by the modified performance function, given by Eq. (6), was equal 

to 0.209, 0.221, 0.434 and 0.067 for tensile strength, rupture stress, modulus of elasticity and hardness. Figure 7 shows 

the measured and calculated tensile strength obtained for training and test data set. To evaluate this neural network there 

were calculated the correlation coefficient (R value), a straight line and the equation obtained for the best linear fit for 

the data. As it is illustrated on Fig. 7, tensile strength was well adjusted by the neural network. Rupture stress (Fig. 8) 

displays a similar behavior of tensile strength. 
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Figure 7: Predicted tensile strength by the neural network versus experimental values for (a) training and (b) test 

data sets. 
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Figure 8: Predicted rupture stress by the neural network versus experimental values for (a) training and (b) test data 

sets. 

 

Figure 9 compares the experimental values and the calculated values obtained for the elastic modulus. In this case 

the architecture did not adjust the data adequately. A probable reason for that could be the amount of data that was not 

sufficient in this case. The final value given by the performance function was equal to 0.434, higher than all others 

cases. 
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Figure 9: Predicted modulus of elasticity by the neural network versus experimental values for (a) training and (b) 

test data sets. 

 

Hardness results can be seen in Fig. 10. In this case the neural network fitted well training and test data sets. The 

neural network made to calculate hardness was that with lower value for performance function. 
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Figure 10: Predicted hardness by the neural network versus experimental values for (a) training and (b) test data sets. 

 

 

 

5. CONCLUSIONS 

 

As can be verified neural networks are a powerful tool to predict mechanical properties of steels. Generally these 

networks are constructed just for one type of steel. This work was an attempt to model five types of steel, and results 

obtained in here encourage more investigations in this area. It could be tested others types of neural networks, such as 

radial bases or wavelets neural networks, these networks generates less free parameters so it would not be necessary to 

enlarge the amount of data set. Another way to improve this generalization could be enlarging the data set. The great 

potential of using neural networks is the economic benefits that it can provide for the industry, because it can reduce the 

necessity of expensive experimental investigation of steels and its mechanical properties. 
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