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Abstract. The aerodynamic noise radiation was investigated by the analysis of sound generation and propagation on sub-
sonic jets at high Reynolds number. For the unsteady flow-noise computations, a non-conservative characteristic-based
formulation was used to solve by implicit large-eddy simulation (LES) the fully compressible Navier-Stokes equations.
The wave modal structure of the flow equations provided by the characteristic-based formulation allows to define non-
reflecting boundary conditions and buffer zone treatments especially adapted for aeroacoustic computations. Results for
a number of canonical flow configurations have demonstrated the excellent performance of the implicit LES in capturing
transition and turbulence decay’s in terms of the evolution of kinetic energy dissipation, energy spectra and enstrophy.
The direct assessment of sound provided by implicit LES allows to compute jet noise radiation at high Reynolds number,
without any subgrid-scale modeling assumption commonly required by traditional LES methods based on acoustic analo-
gies. LES approaches for compressible flows have ranged from the inherently limited Smagorinsky eddy-viscosity type
models to more sophisticated dynamic models. Despite the increasing interest in LES methods for sound predictions, not
enough attention has been paid to the accuracy of these methods and, in particular, the effects of subgrid-scale modeling.
In order to provide highly accurate computations of the nonlinear mechanisms of jet noise generation, the numerical
algorithm employed in the present computations was based on high-order compact finite difference schemes for spatial
discretisation and a standard fourth-order Runge-Kutta method for time advancement. Numerical instabilities arising
from the high-frequency content of the smallest unresolved subgrid scales were removed by the application of optimized
high-order compact filters, which provide dissipation at the higher modified wave numbers only, where the spatial dis-
cretisation schemes adopted already exhibit significant dispersion errors. Numerical simulations of Mach 0.9 cold jets
at Reynolds number 6.5 × 104 were carried out in order to analyse Mach number effects on sound propagation, as for
example, the spatial non-compactness of the sound sources and the highly directional pattern of noise radiation at small
angles, which has been observed in experiments and numerical studies with unsteady shear layer flows. The impact of jet
inflow conditions was evaluated, particularly the spatial structure of the inflow disturbances on the development of the jet
flow and the radiated sound predicted by compressible LES. The present results obtained by the implicit LES procedure
were compared with available experimental and numerical results at similar flow conditions taken from the literature.
Keywords: Computational Aeroacoustics, Aerodynamic Noise Radiation, Subsonic jets, Mach number effects.

1. INTRODUCTION

In computational aeroacoustics, the aerodynamic noise was firstly reported by Colonius et al. [1997] who investigated
the sound radiated by the vortex pairing process in a two-dimensional mixing layer. The periodic character of this flow,
with less extensive unsteady hydrodynamics than jets, facilitates a detailed analysis of the mechanisms of sound genera-
tion. Mitchell et al. [1999a] performed direct numerical simulation (DNS) for both the flow and the sound radiated from
subsonic and supersonic two-dimensional, axisymmetric jets. The predicted sound was found to agree with predictions
of Lighthill’s acoustic analogy. Freund et al. [2000] reported the DNS of a turbulent jet at Mach number 1.92. As the
flow was nearly isothermal, the principal noise radiation was Mach waves generated by supersonically advecting flow
structures. Bogey et al. [2003a] computed by large-eddy simulation (LES) the sound field of a Mach 0.9 jet at a Reynolds
number of 6.5×104 with the Smagorinsky model. Based on the unsteady flow results obtained, they directly compute the
aerodynamic noise. The mean flow and turbulence intensities, as well as sound directivity and sound levels, were found
to be in good agreement with experimental data. Bodony and Lele [2005] conducted a systematic investigation of LES’s
predictive capability for jet noise at the Reynolds number range from 1.3 × 104 to 3.36 × 105. Noise predictions for
the unheated and heated jets were in agreement with experimental data [Tanna, 1977], although some discrepancies were
observed depending on the jet operating conditions. Bogey and Bailly [2006] showed that inflow conditions, particularly
the spatial structure of inflow disturbances, can significantly impact the development of jet flows and the radiated sound
predicted by compressible LES at high Reynolds numbers. Some attempts for round jets have been made by Choi et al.
[1999] and Boersma and Lele [1999]. Nevertheless, except for some studies of Bogey and Bailly [2002c, 2003b,c, 2006]
and Bodony and Lele [2005], the highest Reynolds numbers reached in the LES simulations are still far bellow those of
practical interest. Thus, high Reynolds number calculations of compressible free shear layer flows would be very helpful
for analysing the broad-band noise spectrum and understanding of nonlinear mechanisms of noise generation.
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1.1 Large-eddy simulation of compressible flows

In the last few years, the LES method has achieved significant progress due to advances in computational power,
numerical algorithms and subgrid-scale models. LES has been applied into a wide variety of turbulent flows, ranging from
problems of scientific interest to those with engineering applications. This trend has been motivated by the need to provide
a more realistic characterization of complex unsteady flows encountered in areas such as flow control, aeroacoustics and
fluid/structure interaction. However, the vast majority of LES research has been devoted to incompressible flows; while
compressible flow applications have only recently gained some attention, due to the increased complexity introduced by
the need to model the energy equation [Pascarelli et al., 2000, Yan and Knight, 2002]. Early applications of LES to
compressible flows have used a transport equation for the internal energy per unit mass [Moin et al., 1991, El-Hady et al.,
1994] or for the entalphy per unit mass [Speziale et al., 1988, Erlebacher et al., 1992].

LES methods for compressible flows have ranged from using the inherently limited Smagorinsky eddy-viscosity type
models, to more sophisticated and accurate dynamic models. The Smagorinsky-type models exhibit two major drawbacks.
They ignore turbulence anisotropy and use a local balance assumption between the subgrid scale turbulence kinetic energy
production and its dissipation. Furthermore, they predict non-vanishing subgrid eddy viscosity in regions where the flow is
laminar, i.e. the eddy viscosity should be zero. The dynamic procedure [Germano et al., 1991, Lilly, 1992] for computing
the model coefficient from the resolved velocity field, which requires no adjustable constant, overcome the shortcoming
of the Smagorinsky-type models. However, numerical stabilization procedures become complicated when the dynamic
model is applied to flow configurations in which there are inhomogeneous directions. Recently, Vreman [2004] developed
a new subgrid eddy-viscosity model especially suitable for laminar shear flows, since it vanishes subgrid dissipation in
the laminar region and does not require any averaging or clipping procedure for numerical stabilization. Park et al. [2006]
proposed a dynamic procedure for determining the model coefficient utilizing the global equilibrium between the subgrid
dissipation and the viscous dissipation. In this approach, the model coefficient is globally constant in space but varies in
time, and it still garantees zero eddy viscosity in the laminar flow regions.

In traditional LES solution methods, the equations are obtained by applying a spatial filtering to the flow variables.
Ideally, for incompressible flows the filtering of the Navier-Stokes equations generates a closure problem in the form of
an unknown residual subgrid-scale stress tensor:

τi,j = uiuj − ūiūj , (1)

It should be emphasized that the subgrid-scale stress tensor stems from a closure problem introduced by the spacial
filtering and not from the discretization’s inability to represent the small scales in the flow. As a result, the subgrid-
scale stress tensor strongly depends on the assumed filter shape, which causes a subgrid-scale model to be inherently filter
dependent. Thus, depending on the choice of the filter, the corresponding model should satisfy very different requirements
in terms of large scale dynamics and kinetic energy budget.

1.1.1 High-order low-pass spatial filtering

The analysis of the impact of spatial discretization errors on LES establishes the need of high order low-pass spatial
filtering techniques [Gaitonde and Visbal, 1999]. The high order filtering of Navier-Stokes equations should provides
dissipation at the higher modified wave numbers only, where the spatial discretization already exhibits significant disper-
sion errors, and enforce numerical stability on nonuniform grids. The filtering also should allow to eliminate numerical
instabilities arising from poor grid quality, unresolved scales, or boundary conditions, which left to grow can potentially
corrupt the solution. The filtering operation is defined by Leonard [1974] as follows

f̄(x) =
∫

Ω

f(x′)G(x, x′; ∆̄)dx′, (2)

where Ω is the entire domain, G is the filter kernel function and ∆̄ is the filter width associated to the smallest scale
retained by the filtering operation. Thus, f̄ defines the size and structure of the small scales. If a typical component of the
flow solution vector is denoted by f , filtered values at interior points f̄ must satisfy

αf f̄i−1 + f̄i + αf f̄i+1 =
N∑

n=0

an

2
(fi+n + fi−n), (3)

where the N + 1 coefficients, a0, a1, ..., an are derived in terms of αf with Taylor and Fourier-series analysis [Gaitonde
and Visbal, 1998, 1999]. In principle, for proper resolution of low wavenumbers, the filter accuracy should be equal or
greater than the corresponding accuracy of the spatial discretization scheme. The dissipation characteristics of the filter
as function of the scaled wave number (w) is given by the spectral frequency (SF ) response of the filtering operator

SF (w) =
∑N

n=0 ancos(nw)
1 + 2αfcos(w)

, (4)
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which has N + 2 unknowns, consisting of αf , a0, a1, ..., an. To obtain these coefficients, the highest frequency wave
modes are eliminated by enforcing the condition SF (π) = 0.0. Additionally, the variable αf is usually retained as a
free parameter in order to provide some control on the filtering. Because of the form of the denominator of Eq. (4) and
for proper behavior of the spectral frequency (SF ) response, αf must be in the range −0.5 < αf < 0.5, with higher
values of αf corresponding to less dissipative implicit filters. By contrast, the explicit filter (αf = 0) display significant
degradation of the spectral frequency response and may introduce artificial dispersion as the order of accuracy of the
numerical scheme is reduced. The spectral properties of these filters was extensively examined by Gaitonde et al. [1997].

1.2 Implicit large-eddy simulation

An alternative approach to the subgrid type models is the use of high-order spacial filters to implictly model the
energy content present in the poorly resolved smallest scales of the flow, with no additional subgrid scale stress or heat
flux terms added to the governing equations because of the model. Although the filter is applied explicitly to the evolving
solution, this approach is referred as implicit LES, since the application of the spatial filter is a fundamental component to
mantain stability by removing high-frequency spurious numerical oscillations. The basis of the implicit approach is that
the numerical truncation error associated with the discretization has similar form or action to the subgrid model. Such
implicit approach falls into the class of structural models. As there is no assumed form of the nature of the subgrid flow,
the subgrid model is entirely determined by the structure of the resolved flow [Sagaut, 2001]. Nevertheless, even with
the recently increase of interest in implicit LES, there is not a consensus on the appropriate form of the discretization
error, since it is assumed that the numerics provide sufficient modeling of the subgrid terms to allow correct dissipation
of turbulent kinetic energy.

In order to mantain acceptable numerical acurracy and proper resolution of low wavenumbers, the flow solution
variables are filtered in every spatial direction at the final stage of each time step of the temporal integration using sixth-
order low-pass implicit filters [Visbal and Gaitonde, 2001, Visbal and Rizzetta, 2002] combined with high-order compact
finite difference schemes [Lele, 1992] for the spatial discretization.

The implicit filtering approach is described as follows

αff i−1 + f i + αff i+1 =
4∑

n=1

an

2
(fi+n−1 + fi−n+1) ∀i = 4, ..., nx − 3, (5)

with

a1 = 11
16 + 5

8αf , a2 = 15
32 + 17

16αf , a3 = − 3
16 + 3

8αf , a4 = 1
32 −

1
16αf ,

where αf should satisfy the inequality: −0.5 ≤ αf ≤ 0.5. Filters less dissipative are obtained with higher values of αf ,
and for αf = 0.5 there is no filtering effect. A detailed analysis of the spectral response of this filter may be found in
Gaitonde et al. [1997] and Gaitonde and Visbal [1998].

As the implicit filter (5) has a right-hand side stencil of seven points, obviously it can not be employed near the
boundaries of the computational domain. Thus, the following implicit filter will be used for the neighbor points of the
boundary point i = 1:

αff i−1 + f i + αff i+1 =
7∑

n=1

an,ifn i = 2, 3. (6)

For i = 2 :
a1,2 = + 1

64 + 31
32αf , a2,2 = +29

32 + 3
16αf , a3,2 = +15

64 + 17
32αf , a4,2 = − 5

16 + 5
8αf ,

a5,2 = +15
64 −

15
32αf , a6,2 = − 3

32 + 3
16αf , a7,2 = + 1

64 −
1
32αf .

For i = 3 :
a1,3 = − 1

64 + 1
32αf , a2,3 = + 3

32 + 13
16αf , a3,3 = +49

64 + 15
32αf , a4,3 = + 5

16 + 3
8αf ,

a5,3 = − 15
64 + 15

32αf , a6,3 = + 3
32 −

3
16αf , a7,3 = − 1

64 + 1
32αf .

Analogously, at the points near the boundary point N :

αff i−1 + f i + αff i+1 =
7∑

n=1

an,N−i+1fN−n+1 i = N − 2, N − 1, (7)

while, for the boundary points i = {1, N}, the flow variables are kept without application of any filtering operation.
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2. FLOW CONFIGURATION

2.1 Axisymmetric round jet

In the present work was adopted the hyperbolic tangent velocity profile employed by Bogey et al. [2003a] in the
computation by LES of the aeorodynamic noise radiation on axisymmetric round jets. This profile is given as follows

u(r) =
Uj

2

(
1 + tanh

(
ro − r
2δθ

))
(8)

where Uj is the jet centerline velocity at the inlet, ro is the half jet diameter D and δθ is the inlet shear layer momentum
thickness, with u(ro) = Uj/2. The Reynolds number of the flow based on the jet diameter is

ReD =
Uj ×D

ν
, (9)

where ν is the dynamic viscosity.

2.2 Near-inflow excitation

In order to quickly startup the turbulent mixing process in the jet shear layer, a periodic excitation is applied to the
velocity field in the shear layer, just downstream of the inflow boundary. This control strategy is analogue to that used
to control the vortex pairing process in mixing layers [Moser et al., 2006]. With the purpose of minimizing reflections
of spurious acoustic waves at the inlet boundary, the excitation needs to be essentially incompressible, i.e. with zero
divergence [Bogey and Bailly, 2005a]. The axisymmetric structure of this excitation has the form of an elementary vortex
ring of radio ro with streamwise and transverse velocities described by

Uxo = 2 ro

∆o

y−yo

r exp
(
−ln2 (x−xo)

2+(y−ro)
2

∆2
o

)
Uyo = −2 ro

∆o

x−xo

r exp
(
−ln2 (y−yo)

2+(y−ro)
2

∆2
o

) (10)

where r =
√

x2 + y2 and ∆o is the minimum grid spacing in the shear layer. xo = 0.80ro and yo = 0. The aerodynamic
fluctuations of velocity given by Eqs.(10) are added to the velocity field at each time step t as follows ux = ux + UxoUj

∑1
n=0 αncos(2πfnt + φn)

uy = uy + UyoUj

∑1
n=0 αncos(2πfnt + φn)

(11)

where αn and φn are the amplitudes and phases corresponding to each one of the frequencies of excitation fn. The
characteristic velocity scale on the jet shear layer is the ambient sound speed co. The development of aerodynamic
fluctuactions of velocity on the jet shear layer is governed by two different modes, which are associated with two different
characteristic length scales. These length scales are the shear layer momentum thickness δθ and the jet diameter D.
The first mode is the fundamental frequency fo, which is observed in the neighborhood of the jet inlet. This mode is
responsible by the exponential growth of the shear layer instabilities. For the hyperbolic tangent velocity profile (8), the
linear instability theory [Michalke, 1964] predicts that the strongest amplification rate of perturbations is observed for

fo = 0.017
Uj

δθ
. (12)

The second mode, known as the first sub-harmonic f1 = fo/2, corresponds to the frequency of the velocity fluctuations
that occurs in the jet potential core. This mode is characterized by the Strouhal number

St =
f ×D

Uj
, (13)

which was observed experimentally [Juvé et al., 1980, Stromberg et al., 1980] in the range 0.2 < St < 0.5.

3. NUMERICAL RESULTS

In the present study, the jet Reynolds number was chosen as ReD = 6.5 × 104 and the Mach number was set to
M = 0.9, which leads to the jet centerline velocity Uj = 0.9co. The choice of the jet Mach number 0.9 may be justified
by the considerable amount of numerical and experimental studies available in the literature for subsonic jets at high
Mach numbers [Bogey et al., 2003a, Lau et al., 1993, Lush, 1971, Mollo-Christensen et al., 1964, Stromberg et al., 1980].
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This Reynolds number also corresponds to an intermediate value between jets obtained by DNS with ReD of order 103

and experimental jets, with ReD ≥ 105. For ReD ≥ 105 the number of points necessary for discretization would be
exorbitant, since the jet exit shear layer is very thin [Zaman, 1985] with momentum thickness of the order of 10−3D.
The momentum thickness δθ = 0.05ro was considered, which affords the development of vortical structures in the shear
layer region before occuring the turbulent mixing, i.e. before the end of the jet potential core. The parameters of the
exitation for the two frequencies fo and f1 were fixed as αo = 3.6× 10−3 and α1 = αo/3 for the amplitudes, and φo = 0
and φ1 = π/2 for the phases. Reflections of spurious waves generated by the excitation at the inflow boundary were
minimized by applying an acoustic abosorbing zone in the neighborhood of excitation [Moser et al., 2006].

In order to reduce the inherently high computational cost of the three-dimensional aeroacoustic computations, the pre-
liminary tests of validation involving implicit large-eddy simulations of subsonic jets were carried out in a two-dimensio-
nal domain with size 50×50, which was discretized in a Cartesian grid with 255×225 points. As shown Figure 1 the mesh
is gradually stretched in both directions. As the velocity gradients are more pronounced in the transverse direction, the
mesh is more refined in this direction, with a minimum uniform spacing of ∆ymin = 0.060ro in the jet shear layer region.
Out of this region the grid spacing increases exponentially up to a maximum uniform spacing of ∆ymax = 0.602ro in the
region of the acoustic field. In the streamwise direction, as the gradients of velocity are less important than the transverse
direction, the spatial discretization is relatively coarser. The mesh has a minimum uniform spacing of ∆xmin = 0.071ro

in the region of jet potential core. Downstream of this region the grid is gradually stretched up to a maximum grid spacing
of ∆xmax = 1.402ro at the outflow boundary.

-20
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 20

 0  10  20  30  40  50

y/
ro

x/ro

Figure 1. Grid discretization in the computational domain. Representation of one grid point over five in both directions.

3.1 Aerodynamic sound source

The aerodynamic near-field mixing region of the two-dimensional round jet is represented in Fig. 2 by the vorticity
ωxy = ∂v/∂x − ∂u/∂y. The introduction of a periodic excitation (identified by the two small lobes axisymmetrically

Figure 2. Near-field aerodynamic sound source region of the jet represented by the vorticity field ωxy . Computational
domain for 1 < x/ro < 18 and −4 < y/ro < 4 with buffer zone of aerodynamic dissipation located after x = 15ro.
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distributed near the jet inlet), trigger a growth of the shear layer instabilities, which rapidly evolve downstream to form
axisymmetric coherent vortical structures. The approximation and interaction of two consecutive vortical structures in the
shear layer give rise to the vortex pairing process, which occurs at a fixed position around x = 10ro every period of time
Tp = 1/fp, with frequence fp = fo/2, where fo is the fundamental frequency of the excitation. It should be remarked
that vortical structures which are eventually originated after the vortex pairing process must be rapidly dissipated in the
buffer zone (located after x = 15ro), in order to avoid the development of other pairings which may introduce undesirable
secondary sound sources in the jet shear layer.

A detailed description of the aerodynamic development of the vortex pairing process on the jet shear layer region
is depicted in Fig. 3 by the snapshots of the vorticity ωxy at four successive instants of time separated by Tp/4. The
snapshots allow one to follow the evolutive process of growth, approximation, pairing and merging of two consecutive
vortical structures in the axisymmetric jet shear layer region. As the snapshots show, owing to the exponential growth
of the first vortice in the jet shear layer, the consecutive second vortice is rapidly accelerated, immediatly approximating,
pairing and merging with the first at the end of jet potential core [Soh, 1994, Mitchell et al., 1999b, Bogey et al., 2003a].
The merging process of the two consecutive vortices generates a larger vortical structure, which is convected downstream
by the flow in the near-field mixing region. The aerodynamic development of the vortical structures in the jet shear layer
described above is in agreement with results obtained from simulations of axisymmetric round jets [Bogey, 2000] at the
same flow conditions.

Figure 3. Aerodynamic development of the vortex pairing process on the round jet represented by the vorticity field ωxy

at four instants of time separated by Tp/4. Mixing region of the physical domain for 2 < x/ro < 15 and −4 < y/ro < 4.

3.2 Acoustic field

The acoustic field corresponding to the vortex pairing process in the jet shear layer region described above is repre-
sented in Fig. 4 by the dilatation Θ at four sucessive instants of time separated by Tp/4. The acoustic field solution is
displayed on the whole computational domain for 0 < x/ro < 50 and −25 < y/ro < 25, except on the buffer zone
of aerodynamic dissipation, located after x/ro = 15 and for −4 < y/ro < 4. Even with a relatively small width com-
pared to the domain width, the buffer zone is able to efficiently dissipate all aerodynamic instabilities which arise in the
near-field mixing region downstream of the vortex pairing location, avoiding the eventual appearance of other secondary
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vortex pairing sound sources, which can contaminate the original acoustic field solution. It is important to remark that the
fully computational domain is represented in Fig. 4. This domain does not require any artificial acoustic absorbing region
at the outlow and at the far-field boundaries, what considerably simplifies the numerical implementation and reduces the
computational cost.

Figure 4. Acoustic field propagation from the round jet represented by the dilatation field Θ at four instants of time
separated by Tp/4. The computational domain includes a buffer zone located after x/ro = 15 and for −4 < y/ro < 4.

3.3 Upper regions of aerodynamic and acoustic fields

In Figure 5 are displayed the upper regions of the aerodynamic and acoustic fields represented by the vorticity and
dilatation, respectively. It is important to remark that both fields were directly computed by the implicit LES, without the
need of any modeling approach. It should be noted in Fig. 5 that the acoustic wavefronts propagate from the shear layer
region where occurs the vortex pairing process, which is located at the end of the potential core at around x/ro = 10.
Therefore, it was verified that the only dominant sound source produced in the jet shear layer is the sound radiated
from the vortex pairing process, without any significant spurious wave oscillations provided by the near-inflow excitation
region. This is due to its incompressible nature. It should be noted also that the acoustic waves propagate through the
far-field boundary without producing any significant spurious wave reflections, because of the application of the non-
reflecting boundary condition. The sound radiated by the vortex pairing process on the acoustic field decays to zero for
an angle around 80o, with phase shifting for wider angles of radiation relative to the jet shear layer axis. This particularly
high directive character of sound radiation, especially noticed at high Mach numbers, is attributed to the axisymmetric



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

quadrupolar nature of the sound source, as already observed by LES of tridimensional jets [Bogey et al., 2003a].

Figure 5. Upper regions of the aerodynamic and acoustic fields represented, respectively, by the dilatation Θ and vorticity
ωxy in a physical domain, excluding the buffer zone of aerodynamic dissipation located in the shear layer after x/ro = 15.

4. CONCLUDING REMARKS

Mach number effects on sound radiation were investigated on a subsonic axisymmetric round jet at high Reynolds
number. The preliminary results of noise radiation from a Mach 0.9 cold jet at Reynolds number 6.5 × 104 presented
qualitative agreement with previous results taken from the literature at the same flow conditions. It was shown by the
analysis of the aerodynamic field that the introduction of a periodic near-inflow excitation trigger the growth of shear
layer instabilities, which rapidly evolve downstream to give rise to the vortex pairing process. By the analysis of the
corresponding acoustic field propagation, it was verified that the only dominant sound source produced in the jet shear
layer was the sound radiated from the vortex pairing process, without any significant spurious wave oscillations provided
by the excitation. Due to its incompressible nature. The particularly high directive character of sound radiation, especially
noticed at high Mach numbers, was attributed to the axisymmetric quadrupolar nature of the sound source.

In the ongoing works, thermal instability effects arising from the heated jet flow-noise sources intend to be investigated,
as the presence of counter-rotating vorticity shear layers, already observed by direct numerical simulatations of non-
isothermal mixing layers. It is hoped that high Reynolds number computations of both cold and heated jet flow-noise
sources and its inherently coupled sound propagation will allow us to investigate more deeply the underlying nonlinear
mechanisms by which noise is aerodynamically generated in turbulent shear layer flows at more real flow conditions.
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