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Abstract. This paper presents a gait-pattern selection algorithm for exoskeletons based on the Zero Moment Point cri-
terion. The proposed exoskeleton is developed for lower limbs and based on a commercially available orthosis. The
step length and duration are considered as the selection parameters. First, these parameters are selected by the designer
and a online controller based on the ZMP is implemented to generate stable trajectory for the exoskeleton. In the sec-
ond strategy, the trajectory parameters are computed trough the torso movements generated by the patient intention of
changing the gait-pattern. To test this selection method, it is proposed the principle of co-simulation where the degree of
freedom of interest (hip) is replaced by a real motor. In this case, it is possible to apply real disturbances and make real
measurements of the user intention.
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1. INTRODUCTION

The use of robotic devices to allow intelligent aid of disabled and elderly people is increasing every year. Among the
most promising of these devices are exoskeletons for lower limbs, which help the users giving them support, protection
and necessary forces for a continuous walking (Guizzo & Goldstein 2005). Major advances in this area result from studies
with biped robots. However, few rehabilitation devices proposed for patients with total or partial paralysis of lower limbs
give the user the desired autonomy and safety (Ferris, Sawicki & Domingo 2005).

This work presents a control strategy to generate joint trajectories for an exoskeleton for lower limbs, considering
the information obtained from sensors located in the hip. To make it possible, a trajectory generator based on the Zero
Moment Point (ZMP) criterion is developed (Huang, Yokoi, Kajita, Kaneko, Arai, Koyachi & Tanie 2001). The ZMP
is the point around which the sum of all moments of active forces is zero. It is described a method of optimization of
the joint trajectories where the ZMP criterion is performed and a complete analysis of its convergence. The cubic spline
interpolation method, where key points from the analysis of bipedal walking pattern, is used to generate the trajectories
to be optimized. The position of the key points can be changed to adjust the speed or the gait pattern according to the
user intention. The resulting trajectory can be analyzed through the simulation of a seven degrees of freedom model of
the exoskeleton (Winter & Siqueira 2008).

Seeking to interpret the user intention and generate a trajectory compatible with it, a control strategy to select the
parameters of the trajectory from the measurements obtained from the torso movements is developed. To test this selection
method, it is proposed the principle of co-simulation where the degree of freedom of interest (hip) is replaced by a real
motor. In this case, it is possible to apply real disturbances and make real measurements of the user intention. The desired
torso trajectory is sent to the motor position controller, a hardware interface, and the actual joint torque, obtained from
the motor current, is used as input to the trajectory selection strategy. According to the current value, the parameters
of the trajectory optimization is increased or decreased by a given increment, generating a faster or slower gait-pattern,
respectively.

The paper is organized as follows: Section 2.presents the trajectory generator for biped robots with some issues related
to the optimization procedure; Section 3.introduces the control environment for exoskeleton for lower limbs and the result
of the online control on the ZMP; Section 4.presents the gait-pattern selection algorithm based on the torque applied by
the patient and the results obtained from the proposed strategy; and Section 5. summarizes the main contributions of the
paper.

2. TRAJECTORY GENERATION WITH ZMP CRITERION

In this section, the trajectory generator for biped robots proposed in (Huang et al. 2001) is presented, with some
considerations about the ZMP trajectory optimization. It is considered the exoskeleton is a biped robot with trunk, knees
and feet, as shown in Figure 1. According to (Huang et al. 2001), the walking cycle can be divided in two phases, double
support and single support. The double support phase starts when the heel of the forward foot touches the ground and
finishes when the toe of the backward foot leaves the ground. The second phase is characterized by the fact only one foot



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

is in contact with the ground. In this work, the double support represents 20% of the entire walking cycle.

Figure 1. Biped robot model.

The foot and hip trajectories can be respectively parametrized as Xa = [xa(t),za(t),θa(t)]T , where (xa(t),za(t)) is the
ankle position and θa(t) is the angle between the foot and the horizontal plane, and Xh = [xh(t),zh(t),θh(t)]T , where
(xh(t), zh(t)) is the hip position and θh(t) is the angle between the trunk and the horizontal plane.

2.1 Foot trajectory

The step k occurs between the kTc and (k + 1)Tc time instants, where Tc is the step time interval. Step k is defined
starting when the heel of any foot leaves the ground and finishing when the same heel touches the ground again, Figure 2.
qb and q f are the angles of the foot with relation to the horizontal at the initial and final time instants of the swing phase
(single support), respectively.

Figure 2. Walking cycle, double and single support phases.

Assuming that the left foot is completely in contact with the ground during the times kTc + Td and (k + 1)Tc, the
following conditions can be stated:

θa =


qgs(k), t = kTc
qb, t = kTc +Td
−q f , t = (k +1)Tc
−qge(k), t = (k +1)Tc +Td

(1)

where Td is the time interval of the double support phase, qgs(k) and qge(k) are the ground slope for the initial and final
step instants, respectively.
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The following specifications can also be defined for the foot position:

xa =



kDs, t = kTc
kDs + lansin(qb)

+la f (1− cos(qb)), t = kTc +Td
kDs +Lao, t = kTc +Tm
(k +2)Ds− lansin(q f )

−lab(1− cos(q f )), t = (k +1)Tc
(k +2)Ds, t = (k +1)Tc +Td

za =


hgs(k)+ lan, t = kTc
hgs + la f sin(qb)+ lancos(qb), t = kTc +Td
Hao, t = kTc +Tm
hge + labsin(q f )+ lancos(q f ), t = (k +1)Tc
hge(k)+ lan, t = (k +1)Tc +Td

(2)

where (Lao,Hao) is the higher foot position (this position occurs at kTc + Tm), Ds is the step length, lan is the foot height
and la f is the distance between the heel and the ankle joint. The heights of the ground when the foot is touching it are
defined as hgs(k) and hge(k), for the initial and final step instants, respectively. Some constraints on right foot velocities
are also imposed, see (Huang et al. 2001) details. A smooth trajectory can be generated through the interpolation method
based on cubic splines, where second order differentiable trajectories are generated for all time interval.

2.2 Hip trajectory

It is considered that the angle between the trunk and the horizontal axis θh(t) presents no variation along the walking
cycle. Also, as the position of the ZMP is not affected by the hip motion in the z direction, it is assumed a little variation
between the highest position Hhmax and the lowest position Hhmin, where the former occurs at the middle of the single
support phase and the second at the middle of the double support phase. That is, zh can be defined as:

zh =

 Hhmin, t = kTc +0,5Td
Hhmax, t = kTc +0,5(Tc−Td)
Hhmin, t = (k +1)Tc +0,5Td .

(3)

Considering the sagittal plane, the hip motion along the x direction is the main contribution for the ZMP be inside the
support polygon. In (Huang et al. 2001) it is proposed generate a set of stable trajectories xh(t) and select the trajectory
with large stability margin according to the ZMP criterion.

The following conditions are defined for the hip trajectory along the x direction:

xh =

 kDs + xed , t = kTc
(k +1)Ds− xsd , t = kTc +Td
(k +1)Ds + xed , t = (k +1)Tc

(4)

where xsd and xed are the distances along the x direction from the hip to the ankle of the support foot at the initial and
final time instants of the swing phase, respectively. In this paper, these values are constrained to xsd ∈ (0;0.5Ds) and
xed ∈ (0;0.5Ds).

Considering the interpolation method based on cubic splines, it is possible to generate different trajectories and to
select the best one according to the ZMP criteria. To guarantee that the ZMP remains most of the time next to the center
to the support polygon, the following functional is defined:

J(xed ,xsd) =
∑

p
n=1 d2

ZMP

p
, (5)

where dZMP is the distance between the ZMP and the center of the stability region defined by the convex polygon of the
contact points and p is the number of points throughout the trajectory in which dZMP is computed.

2.3 Optimization issues

The steepest descent algorithm was selected as the optimization method. It presents an easy implementation and high
convergence rate after all parameters be adjusted. The computation of J is highly time consuming if a representative
number of trajectory points p must be considered. The algorithm is defined as:

Xn+1 = Xn−η∇J(xed ,xsd) (6)

where Xn is the vector containing the values of xed and xsd for optimization step n, η is the optimization rate and ∇J(xed ,
xsd) is the functional gradient with relation to xed and xsd .

As shown in Section 2., the minimization of J is constrained to xsd ∈ (0;0.5Ds) and xed ∈ (0;0.5Ds). Hence, it is
necessary to constrain the algorithm to these values. Also, there are values of xed and xsd for which there is no solution
for the inverse kinematic used to compute the shin and thigh absolute angles. The functional J is defined constant and
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equal to zero in this region. If the result from optimization, Xn+1, is outside the functional domain (where J is imposed to
be zero), the optimization stops, because ∇J(xed ,xsd) = 0. ∇J(xed ,xsd) is computed numerically by a small variation on
the parameters. According to the selected initial condition, the above problem occurs frequently if the optimization rate
is not properly selected.

The following strategy was defined to solve this problem: if the optimization result belongs to the area outside the
functional domain (J = 0 and ∇J = 0 ), it is defined a convergence direction perpendicular to the last ∇J 6= 0, until the
result belongs to the domain. Figure 3 shows a minimization results where the proposed strategy is utilized and the final
result is inside the functional domain.

Figure 3. Optimization results for initial value X0 = [0.3 0.4]T and optimal value Xopt = [0.5 0.26]T . The proposed
strategy for points outside the functional domain is used at the second optimization step.

Figure 4 shows the surfaces of J for different values of Ds and Tc. This analysis is important because DS and Tc define
a essential characteristic of the gait-pattern, the velocity. By changing these parameters, a wide variation of trajectories
can be created.

Figure 4. Surfaces of J for different values of Ds and Tc.
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It can be noted from Figure 4 that the variation of Tc does not affect the surface of J. However, for a little variation on
Ds the domain of J is extremely reduced. In this case, there is no solution for the inverse kinematic for a wide range of
values. That is, there are few trajectories which maintain the hip height and develop a large step length, Ds = 0.6 m.

From the analysis of the variation of J given a variation of Ds, it is proposed a relation between the step length, Ds, and
the maximum height, Hhmax. For a given Ds, Hhmax can be computed as the height of the isosceles triangle defined by base
Ds and sides Lth + Lsh plus the ankle height. This value is parametrized by parameters defined as function of (Ds−0.5)
an (T c−0.9), the differences from the initial values of Ds and Tc, as shown in the following equations:

Hhmax =

√
(Lsh +Lth)2− (

Ds

2
)

2
+ lan

 .α1.α2, (7)

{
α1 =

(
Ds−0.5

0.5

)2
−1, Ds−0.5 > 0,

α1 = 1, Ds−0.5 < 0,
α2 =

(
|Tc−0.9|

0.9

)3.2

−1. (8)

where Lsh and Lth are the lengths of the shin and thigh, respectively.
Figure 5 shows the surfaces for J computed for different values of DS and considering the empirical relation for Hhmax.

Note that the functional domain remains suitable for the optimization, even with the variation of Ds.

Figure 5. Surfaces for J considering the empiric relation for Hhmax.

3. EXOSKELETON CONTROL ENVIRONMENT

This section presents the exoskeleton dynamic parameters, a brief description of the control environment where the
trajectory generator is implemented and the resuts of the first control strategy, based on the online control of the ZMP.
The orthosis used for the exoskeleton for lower limbs corresponds to one Reciprocating Gait Orthosis LSU (Lousiana
State University). Figure 6 shows the orthosis and the exoskeleton design, created in the Solid Egde software. It is
considered that all joints in the sagittal plane will be driven by an Series Elastic Actuator (SEA). SEA can performed
force and impedance controls, which can be used to generate a variable impedance controller (Walsh, Paluska, Pasch,
Grand, Valiente & Herr 2006).

Figure 6. RGO orthosis and exoskeleton design (Solid Edge).
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The dynamic parameters of the orthosis, shown in Tab. 1, was obtained by the Solid Edge model. It is also presented
the parameters of the patient considered in the simulation, obtained from (Winter 1990), considering a 85 kg, 1.74 m
individual.

Table 1. Orthosis and Patient Dynamic Parameters.

Orthosis Patient
Mtotal,ort 4.8 Mtotal,pat 85
Ltotal,ort 1.0 Ltotal,pat 1.74

Limb Mass (kg)
Mtigh,ort 0.95 Mtigh,pat 8.5
Mleg+ f oot,ort 0.72 Mleg+ f oot,pat 5.2

Mtorso,ort 1.49 Mtorso,pat 57.6
Limb Length (m) - z direction

Ltigh,ort 0.39 Ltigh,pat 0.39
Lleg+ f oot,ort 0.49 Lleg+ f oot,pat 0.49

Ltorso,ort 0.12 Ltorso,pat 0.87

An analytical model of the orthosis ground reaction forces, is developed using the Symbolic Toolbox of the Matlab.
Figure 7 shows the motion animation of the orthosis-patient system for a simulation of two steps. In the initial step it is
considered Ds = 0.45 and Tc = 0.9. For the second step Ds = 0.58 and Tc = 0.8. Only the orthosis representation is shown
since the patient dynamic is incorporated in the orthosis dynamics.

Figure 7. Motion animation of the orthosis-patient system.

It can be observed that the algorithm obtained satisfactory results with relation to the selection of the parameters used
to generate trajectory desired by patient.

3.1 Orthosis-patient dynamics

To implement the gait-pattern selection algorithm, the orthosis is modeled according to the basic robotic equation,

Mort(q)q̈+Cort(q, q̇)+Gort(q) = τa + τpat + τd , (9)

where q ∈ ℜn is the generalized coordinates vector, M ∈ ℜnxn is the symmetrical, positive definite inertia matrix, C ∈ ℜn
is the centrifugal and Coriolis torques vector, and G ∈ ℜn is the gravitational torques vector. The terms τ ∈ ℜn are the
torques acting in orthosis: τa is the torque supplied by the actuators, τpat is the torque generated for the orthosis-patient
interaction, and τd is the torque generated by any external disturbances acting in the patient-orthosis system.

The torque of interaction between the orthosis and the patient, τpat , can be divided in active and passive components.
The passive patient torque, τpat,pas, is the torque necessary to move the patient if he/she is moving in a passive way. In
case that the patient influences in the orthosis movement, he/she will produce the active patient torque, τpat,at . Therefore,
Eq. (9) can be rewrite, considering now, the orthosis-patient dynamics,

Mort+pat (q) q̈+Cort+pat (q, q̇)+Gort+pat (q) = τa + τpat,act + τd , (10)

where Mort+pat(q), Cort+pat(q, q̇), and Gort+pat(q) correspond to the combination of the orthosis and patient dynamics.
The following results show the position of the ZMP for a given stable trajectory, Fig. 8. They were obtained using the

simulator and considering the position control strategy proposed in (Gomes, Silveira & Siqueira 2009). In the graphics
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containing ZMP measurements, the origin of the coordinate system is transferred to zero when one foot touch the ground
and the other leaves.

Figure 8. ZMP position, off-line control strategy.

As one can note, the desired trajectory of the ZMP, which was optimized using the procedure described above, is most
of the time within the stable region. However, the simulated trajectory, even disregarding the negative peak, generated
because of the way in which the forces of contact are computed, becomes outside the stable region for a long period of
time and further from its center. To correct this deviation from the desired trajectory, we suggest the application of an
on-line control based on the ZMP.

3.2 Online control based on the ZMP

The proposed controller to improve the position of ZMP is a PD one,

τθ4 = Kpdzmp +Kd ḋzmp, (11)

where Kp and Kd are gains selected by the designer. It is applied to the joint between the torso and thigh of the support
leg and is computed with relation to the center of the stable region. This angle directly influences the position of the leg
and torso in balance, thus significantly changes the position of ZMP. But, as the simple and double support dynamics are
different, the control parameters are different in each stage. Figure 9 shows the results of the proposed control strategy.

Figure 9. ZMP position, online control strategy.

It can be concluded that the online control strategy is effective to bring the ZMP to the center of the stable region in the
double support phase, and make it returns to the region of stability faster, during the single support phase. Therefore, this
control is effective in improving the overall stability of the system. The same control strategy can be applied considering
the ankle joint as actuation point. This actuation changes directly the ground reaction forces and the position of the waist,
thus changing the position of ZMP. The results are similar to the previous one.



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

4. CO-SIMULATION

The second control strategy proposed in this paper is the selection of the desired trajectory from the torque applied by
the patient trough his/her torso. It is defined a proportional relation between the speed of the step, which was previously
described, and the torque applied by the patient. This user intention can be measured by reading the motor current. The
following adaptation law is proposed,

∆Vstep = ∆

(
Ds

Tc

)
= K∆.Kt .im, (12)

where K∆ is a gain selected by the designer, Kt is the motor torque constant and im is the motor current. To ensure
this principle is suitable, the control environment was modified through the interpreted programming language in the
MATLAB for compiled language using textit (mex) files, thus the simulator can make the integration in a time as closer
as possible to real. To speed up the integration time, we also implement a fourth-order Runge Kutta integration method.

Figure 10. Co-simulation implementation setup.

With this assumptions, we can apply the concept of co-simulation, in which one of the seven degrees of freedom
that define the system is replaced by a real motor. The motor position simulates the torso position of the patient. The
implementation setup is composed by a DC motor (Maxon Motors), controlled by the digital positioning controller EPOS.
This device implements a PID control to follow the desired position for this joint, generated by the trajectory planning. In
the control environment , the response of the differential equation for this parameter is replaced by actual values measured
by the motor encoder. Therefore, any disturbance applied to the motor changes the simulation. This concept can be better
understood by the block diagram of Figure 10.

When the user intents to change the actual position of the motor, the internal control will increase the torque applied
to maintain the desired position. This applied torque increase can be measured from the applied current to the motor.

Figure 11. Desired and real torso trajectories.

Thus, during the step, the user can change the position of the motor according to the exoskeleton posture shown in the



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

control environment interface. It is necessary to exert an average torque during the step from which it can be defined the
variation of the speed of the next desired step, Eq. 12. The results of one of these tests are shown in Figures 11 and 12.

Figure 12. Applied current.

From the above graphs, it can be seen that if the user tries to give up the desired trajectory, the current supplied to the
motor increases indicating that the patient is trying to move faster. The selection of trajectories using the current can be
seen in Table 2, emphasizing that the average torque of a step changes the speed of the next step.

Table 2. Trajectory parameters for each step.

Step 1 2 3 4 5 6 7 8 9 10 11 12
Ds (m) 0.51 0.51 0.49 0.47 0.50 0.53 0.55 0.57 0.59 0.58 0.56 0.54
Tc (s) 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
im (A) -7 -449 -455 516 652 401 395 391 -219 -395 -396 -

5. CONCLUSIONS

This paper deals with trajectory planning for an exoskeleton for lower limbs. It was observed the trajectory generator
proposed in (Huang et al. 2001) and based on the ZMP criterion is suitable to perform adaptation algorithms for exoskele-
tons. First, it was observed that the imperfections of the trajectory of the ZMP can be corrected by a control based on the
error of this position. It is also presented the implementation of a gait-pattern selection algorithm, which considers the
orthosis-patient interaction through the analysis of the torso torque and the ZMP criterion, allowing the patient to modify
the gait-pattern and still maintaining the walking stability. The simulation results show the proposed selection algorithms
can be applied in the actual exoskeleton being constructed.
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