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Abstract. Determination of the optimal turning parameters of lathes located in a Flexible Manufacturing System (FMS) 
(where production is made on small lots or even on individual lots) will impose the maximization of production rate at 
bottleneck resources and the minimization of production costs at non-bottleneck resources. Whenever production 
bottlenecks are identified, it is important to speedup the production of these bottleneck tasks as much as possible. But if 
a task is not on a production bottleneck, its production time should be revised on a struggle for tools and energy 
economy. Therefore, manufacturing industries should be able to revise turning parameters at lathes according to 
production mix. But this is clearly not the case at industries worldwide. From the literature, it can be observed that 
optimization of turning (or machining) parameters is a relevant problem. But there has only been a few articles using 
Operations Research approaches to solve this problem and most of this literature presents the use of heuristic methods. 
In this paper, an attempt to determine the optimal cutting parameters using Mathematical Programming commercial 
software is reported. A Mixed Integer Nonlinear Programming (MINLP) model is applied to the software GAMS/Baron 
to determine the optimal turning parameters. To optimize the cutting parameters in a FMS, minimization of production 
costs will be analyzed, taking into account the constraints of permissible surface roughness, cutting parameters range, 
and machine restrictions. Therefore, this work is focused on: i) presenting a thorough revision of the literature; ii) 
describing a nonlinear mathematical programming model to the problem taken from the literature; and iii) comparing 
the solution of a mathematical programming software to two other heuristic approaches (using simulated annealing 
and genetic algorithms) proposed in the literature. This paper presents the results of an ongoing research. 
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1. INTRODUCTION  

 
A Flexible Manufacturing System (FMS) is an automated production system which may be composed of several 

CNC machines. According to Xiaobo and Ohno (1999), a FMS is composed of workstations, a system for materials 
handling and a control system. Each workstation can contain input and output buffers, as well as CNC machines. The 
control system is responsible for commanding the FMS through a client-server control architecture.  

An increasing investment in production automation is being observed in manufacturing industries, especially 
through the acquisition of CNC machines. Despite the fact that this investment can be expensive, the productivity 
accomplished using CNC machines can be questioned. The reasons for this inefficiency are twofold: i) lack of trained 
personnel to provide improvements; and ii) unawareness of the problem complexity. For instance, determination of the 
optimal turning parameters of lathes located in a Flexible Manufacturing System (FMS) (where production is made on 
small lots or even on individual lots) will impose the maximization of production rate at bottleneck resources and the 
minimization of production costs at non-bottleneck resources. It is important to notice that bottlenecks on a FMS are 
only identified after production scheduling or sequencing. On the other hand, consider the case of cellular 
manufacturing where, due to significant setup times, production is made on lots of hundreds or thousands of 
manufactured parts. At this situation, bottlenecks can be identified simply by an analysis of equipment loading. In both 
situations, whenever production bottlenecks are identified, it is important to speedup the production at bottleneck tasks 
as much as possible. But if a task is not on a production bottleneck, its production time should be revised on a struggle 
for tools and energy economy. What should be remarked from the above mentioned situations is that a task will or will 
not be on a bottleneck resource depending on the production mix and that industries may face significant production 
mix variations on their daily operations. Therefore, manufacturing industries should be able to revise turning parameters 
at lathes according to production mix.  

From the literature, it can be observed that optimization of turning (or machining) parameters, as described 
previously is a relevant problem. According to Su and Chen (1999), cost, productivity, and quality of machined parts 
are significantly affected by its turning/machining parameters. But there has only been a few articles using Operations 
Research approaches to solve this problem and most recent literature presents the use of heuristic methods. The most 
used heuristic methods in the operations research literature are: simulated annealing (Aarts, 1989), tabu search (Glover 
and Laguna, 1997), genetic algorithms (Goldberg, 1989), and ant colonies (Dorigo et al., 1996). 

According to Lee and Tarng (2000), the economical analysis of machining processes was started in 1950. A 
Dynamic Programming approach to this problem was proposed by Agapiou (1992a; 1992b). Prasad et al. (1997) 
proposed a combination of Geometric and Linear Programming to solve a multi-stage turning problem, which was 
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implemented within a PC-based Computer-Aided Process Planning (CAPP) system. Lee and Tarng (2000) constructed a 
machining model based on a polynomial network. Wang and Liu (2007) formulated a pair of two-level machining 
economics problems to calculate the upper and lower bounds of the unit production cost, which were transformed into 
one-level conventional geometric program, based on the duality theorem. 

Su and Chen (1999) presented Simulated Annealing approaches to define turning parameters. Sankar et al. (2007) 
proposed the use of Genetic Algorithms to solve a multi-stage turning problem. Saravanan et al. (2003) attempted to 
compare the methods of Simulated Annealing and Genetic Algorithms.  

The rest of this work has been organized as follows. Section 2 presents a nonlinear mathematical programming 
model to the problem. This work attempts to compare three different approaches: a proposed simulated annealing, a 
genetic algorithms proposed by Saravanan et al. (2003), and using GAMS/BARON/CPLEX which is a mathematical 
programming software. At section 3, the proposed simulated annealing approach is presented, as well as a brief 
description on how this problem is solved using mathematical programming. Results and conclusions are presented at 
section 4 and 5, respectively. 
 
2. MATHEMATICAL MODEL 
 

The turning process of a part is divided in two stages, the rough and the finish machining. The rough process 
consists in multiple tool passes removing as much material as possible, without compromising the tool, the machine or 
the machined part. The finish process, on the other hand, consists in a single tool pass bypassing the part after most of 
the material has been removed in the rough process. In the finish machining the most important is that the part ends up 
with the roughness and accuracy that was designed. According to Saravanan et al. (2003), Wang and Liu (2007), Su and 
Chen (1999), and Sankar et al. (2007) the parameters that must be optimized in the turning process are the cutting 
speed, the feed rate, and the depth of cut. 

When it is required to use two or more machines inside a manufacturing cell to produce a certain lot of different 
parts, the optimal sequence of the manufacturing process is important, where one can seek after the lowest cost or the 
most productive sequence. This sequencing must consider some manufacturing bounds to each part in the lot, such as 
the loading level of the machines, time to machine the part, setup depending on the sequence, among others. In order to 
have a larger profit it is important that the time to manufacture a lot is as small as possible in the production bottleneck, 
so a greater quantity of parts is produced in the same amount of production time. Hence, the first step to optimize the 
production sequence (in a manufacturing cell, for example) is to define the minimum time to machine each part in each 
machine. 

In a machining process, higher cutting speed, feed rate, and depth of cut guarantee more speed of material removal. 
However, the cutting tool consumption may become too high, causing more changes of tools, therefore reducing the 
global time to manufacture the parts. So, to calculate the minimum time to machine the parts (Eq. 1), it is considered the 
time whilst the tool is actually removing material, the setup time of a machine, and the time to load and unload the parts 
in the machine. Table 1 shows the notations of the mathematical expressions used in the bound modeling. According to 
Stemmer (2001), Eq. 1 shows the minimum machining time calculus and Eq. 2 indicates the calculus of machining 
costs.  

Also, the physical limits of the machine and the cutting tool must be considered, such as the minimum and 
maximum cutting speed, maximum machine power and maximum temperature supported by the cutting tool and the 
machined part. The Eq. 3, 4, and 5 are the cutting parameters bounds (Saravanan et al., 2005). Equation 6 is the tool life 
calculus, which depends exclusively of the cutting speed (Stemmer, 2001). Equation 7 is associated to the calculus of 
setup times, that is considered the time to prepare the machine summed to the time used to change the cutting tools 
(Stemmer, 2001).  

The Eq. 8, 9, 15, and 16 are the bounds of maximum machine power, maximum cutting temperature supported by 
the cutting tool and by the part, dimensional constraint, and the maximum roughness allowed in the part after the finish 
machining (Saravanan et al., 2005). Equations 10, 12, 13, and 14 are the time to remove material of the part in straight 
machining, where there is only diameter reduction, linear machining, face machining, and circular machining, as 
proposed by Su and Chen (1999). Equation 11 shows the calculus used to set the angles θ used in Eq. 12, 13, and 14 (Su 
and Chen, 1999). Equations 17, 18, 19, and 20 are relations between the cutting parameters in rough and finish turning 
(Sankar et al., 2007).  

The Eq. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 are used for both rough and finish machining and all equations will 
be used directly for mathematical programming, at simulated annealing, and at the genetic algorithm. It is important to 
notice that this section presents the equations that are most popular in the literature concerning cutting parameters 
definition.  

 
CONSTANTttmTmttmT setuppssetuppt ++∗=∗++∗=          (1) 
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Table 1. Notation used in the mathematical expressions. 
 

Nomenclature 
Tt Total time of the production cycle [min.] 
Ts Secondary time is the part’s loading/unloading time which is a constant 
tsetup Sum of the times used to change the cutting tools and the machine’s setup time [min.]
tp Sum of the rough and finish machining times [min.] 
tr, ts Time of the rough and finish machining, sum of straight, linear, face and circular 

turning times [min.] 
tsr,tss Time of straight turning in rough and finish machining [min.] 
tlr, tls Time of linear turning between any two points in rough and finish machining [min.] 
tfr, tfs Time of face turning in rough and finish machining [min.] 
tcr, tcs Time of circular turning between any two points in rough and finish machining 

[min.] 
m Quantity of parts to be produced 
K Total costs of the production cycle [$] 
Kc Constant costs for each produced part, such as raw material [$/Part] 
Kp Machining time cost [$] 
Kt Tool cost [$/Toll] 
Tvr, Tvs Tool life in rough and finish machining [min.] 
Ct, n Constants of tool life equation 
ttf Changing tool time [min.] 
vcr, vcs Cutting speed in rough and finish machining [m/min.] 
vcrL, vcrU Lower and upper bound of cutting speed in rough machining [m/min.] 
vcsL, vcsL Lower and upper bound of cutting speed in finish machining [m/min.] 
fr,fs Feed rate in rough and finish machining [mm/rev.] 
frL, frU Lower and upper bound of feed rate in rough machining [mm/rev.] 
fsL, fsU Lower and upper bound of feed rate in finish machining [mm/rev.] 
apr,aps Depth of material to be removed in rough and finish machining [mm] 
aprL, aprU Lower and upper bound of depth of cut in rough machining [mm] 
apsL, apsU Lower and upper bound of depth of cut in finish machining [mm] 
br,bs Chip width in rough and finish machining [mm] 
hr, hs Chip thickness in rough and finish machining [mm] 
Kc1.1 Specific cutting pressure that gives a chip with bxh = 1x1 [N/mm2] 
mc Constant of cutting force equation 
Pr, Ps Cutting power during rough and finish machining [kW] 
PrU, PsU Maximum cutting power allowed during rough and finish machining [kW] 
Qr, Qs Temperature during rough and finish machining [ºC] 
QrU, QsU Maximum temperature allowed during rough and finish machining [ºC] 
Kg, T,Φ, δ Constants related to machining temperature 
d, l Diameter and length of straight turning operation [mm] 
r Nose radius of the cutting tool [mm] 
x1, x2 Radius of the initial and final points in linear, face or circular turning [mm] 
xc Equivalent radius of the position of the center of the circular turning [mm] 
Δ Length between the final and initial points in linear or circular turning [mm] 
ra Radius of the circular turning [mm] 
θ Angle used in the calculus of linear and circular turning [rad.]  
Rmax Maximum allowable surface roughness [mm] 
nc Number of rough cuts [an integer] 
k1, k2, k3 Constants for rough and finish parameters relations 

 

tp
sv

s

rv

r
tc TK

T
t

T
tKmKmK ∗+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∗∗+∗=            (2) 

 

rUcrcrLc vvv ≤≤               (3) 
 

rUrrL fff ≤≤               (4) 
 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 

rUprprLp aaa ≤≤               (5) 
 

n

rc

t
rv v

CT

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=                (6) 

 

SETUPt
T
tmt

T
tmt tf

sv

s
tf

rv

r
setup +∗∗+∗∗=           (7) 

 

rU
rcprrf

r P
vafk

P ≤
∗∗∗

=
60000

υμ

            (8) 

 

rUrprrcqr QafvKQ ≤∗∗∗= υϕτ              (9) 
 

rrc
sr fv

ldt
∗∗

∗∗
=

1000
π

            (10) 

 

fi

if
fi

xx
Δ

−
= −1tanθ              (11) 

 

21

2
1

2
2

sin1000 θ
π xx

fv
t

rrc
lr

−
∗

∗∗
=             (12) 

 
2
1

2
21000

xx
fv

t
rrc

fr −∗
∗∗

=
π

            (13) 

 

( ) ( )1212 coscos
500 ccaccc

rrc

a
cr rx

fv
rt θθθθπ

−∗−−∗∗
∗∗

∗
=       (14) 

 
4905.09709.02848.0

1 66.100 prrcr afv ∗∗∗= −δ          (15) 
 

.max

2

8
R

r
fs ≤              (16) 

 

c

sp
rp n

ad
a

−
=             (17) 

 

sprp aka ∗≥ 1             (18) 

rcsc vkv ∗≥ 2             (19) 
 

sr fkf ∗≥ 3              (20) 
 
3. SOLUTION METHODOLOGY 
 

To optimize the cutting parameters in a FMS, minimization of production costs is analyzed, taking into account the 
constraints of permissible surface roughness, cutting parameters range, and machine restrictions. This paper analyzes 
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three optimization techniques to set cutting parameters in turning operations, which are simulated annealing, genetic 
algorithm, and mathematical programming. The genetic algorithm approach used in this paper was proposed by 
Saravanan et al. (2003) and the reader should refer to this paper for details concerning this approach.  

 
3.1. Mathematical Programming 

 
A branch of research in mathematical programming is the so called Global Optimization which seeks to solve mixed 

integer nonlinear problems (MINLP) to optimality. At nonlinear problems a significant number of local optimal 
solutions can be found. The greatest challenge on such problems is on how to separate a concave surface into a 
collection of several convex hulls (where each convex hull will possess a single optimal solution). Therefore global 
optimization approaches attempt to form a collection of convex subproblems. A way to obtain convex subproblems is 
by using an Outer Approximation approach (Horst and Tuy,1992), which make use of cutting planes to transform a 
nonlinear problem into several linear subproblems. Each linear subproblem (whose solution is found within pseudo-
polynomial time) becomes a relaxed convex hull which contains one or more local optimal solutions of the nonlinear 
problem within it. These linear subproblems can be submitted to a Branch-and-Bound search (Horst and Tuy, 1992) or 
to a Disjunctive Programming approach (Tawarmalani and Sahinidis, 2002) which identifies the most promising 
subproblem. The most promising subproblem receives additional cutting planes to prune it. The goal of Global 
Optimization is only to identify a local optimal solution if it is promising candidate to become a global optimal solution. 
Notice that if Branch-and-Bound (or Disjunctive Programming) is solved until its end, the global optimal solution will 
be identified due to its combination of mixed integer linear programming (MILP) and nonlinear programming (NLP) 
search approaches. For instance, readers interested in the subject can refer to the books by Horst and Tuy (1992) and 
Tawarmalani and Sahinidis (2002).  

In order to solve the proposed problem using mathematical programming, a software for mixed integer nonlinear 
programming (MINLP) problems was used. The chosen software was GAMS/BARON/CPLEX, where GAMS is a 
modeling platform for mathematical programming problems, CPLEX is a MILP solver which is controlled by BARON, 
that is a MINLP solver developed by Tawarmalani and Sahinidis (2002). Since there is a paradigm that heuristic 
methods are the best choice to solve MINLP problems (due to its complexity), the authors have decided to test 
GAMS/BARON/CPLEX at the proposed problem. In order to use this software to solve the proposed problem, 
equations presented in section 2 have been modeled in GAMS. GAMS was set to use BARON as its solver, demanding 
no addition actions to solve the proposed problem. 

 
3.2. Simulated Annealing 
 

Unlike the GA (proposed by Saravanan et al. (2003)) and the mathematical programming approaches (which only 
required the modeling within GAMS), a simulated annealing (SA) algorithm is proposed in this work to be compared to 
the two other approaches. The simulated annealing is a probabilistic local search technique based in an analogy with the 
change of the state of the material when simulating its cooling after being heated to its liquid state (Aarts, 1989). The 
analogy between the optimization technique and the change of the state of the material is very direct, where the 
objective function is associated to the evaluation on the amount of internal energy. The several states of the material are 
the possible solutions. The meta-stable states of the material are the local optima and the crystalline structure is the 
possible local optimum (considering a crystal being cooled). The initial value of the temperature – which will have no 
physical meaning at optimization problems – and its decrement expression are important factors to the good 
performance of SA.  

This work intends to compare different optimization approaches. Therefore, this paper tests different SA 
approaches, which are compared to the SA approach proposed by Saravanan et al. (2003; 2005). In order to enable an 
easier comparison to the approach proposed by Saravanan et al. (2003; 2005), all the tested SA approaches use the same 
initial temperature, equal to 475 (which was proposed by Saravanan et al., 2005).   

Notice that Saravanan et al. (2003; 2005) have presented several heuristic approaches to solve this problem but they 
do not present or compare different parameters for each heuristic. Due to this, SA approaches at this paper are tested for 
different cooling factors α – which assumed the values 0.9 and 0.99 – and with the use or not of re-heating. Re-heating 
is used to re-start the SA using the last solution – which is expected to be close to or at a local optimum – as the initial 
solution. Whenever used, re-heating is performed 10 times. The SA proposed by Saravanan et al. (2005) only used a 
cooling factor equal to 0.9 and did not use re-heating. The steps to perform the simulated annealing – which are 
different from those of previous papers – are as follows. The goal is to test the influence of these parameters to SA. The 
steps to perform the simulated annealing are as follows. The variable s* represents the best solution found during the 
execution of the algorithm. Minimum temperature was set to 30, as a limit when SA behaves as a “Hill-Climbing” 
approach; that is, SA starts performing a local search. Ci is used to count the amount of iterations within local search 
that have been performed. Cf indicates the maximum number of iterations within local search. K indicates the cost of a 
solution. 
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Step 1 SET Ci = 0, Cf, T0, initial solution (s). 
Step 2 Randomly generate a neighbor solution (s’). 
Step 3 IF K(s’) ≤ K(s), THEN: 

     s = s’ 
     IF K(s’) ≤ K(s*), THEN: s* = s’ 
     ENDIF 
ELSEIF K(s’) > K(s), THEN: 
     Δ = K(s’) - K(s)  
      IF R ≤ EXP(Δ /T), THEN: s = s’ 
      ENDIF 
ENDIF. 

Step 4 SET T = αT 
IF T < 30, THEN: 
     Ci = Ci + 1 
     IF Ci > Cf, THEN: 
         Ci = 0 
         T = T0 
         COUNT RE-HEATING 
     ENDIF 
ENDIF 

Step 5 IF RE-HEATING ≤ STOP_CRIT, THEN: GOTO STEP 2 
Step 6 Present best solution found (s*) 

 
4. RESULTS  
 

There was an effort to use only data extracted from Saravanan et al. (2005) in order to compare their results with all 
three results from our optimization techniques, but some bounds and considerations were not presented by them. Then, 
data used in this paper were extracted from Saravanan et al. (2005), Sankar et al. (2007), and Stemmer (2001) and are 
described in Tab. 3. 

 
Table 3. Cutting model data. 

 
Parameter/ 
Constraint Values Parameter / 

Constraint Values Parameter / 
Constraint Values 

vcrU 550 m/min. vcrL 50 m/min. frU 1.0 mm/rev. 
frL 0.2 mm/rev. aprU 3.0 mm aprL 1.0 mm 

vcsU 550 m/min. vcsL 50 m/min. fsU 1.0 mm/rev. 
fsL 0.2 mm/rev. apsU 3.0 mm apsL 1.0 mm 
Ct 300 n 0.2 kf 108 
μ 0.75 υ 0.95 PrU 200 kW 
Kq 132 Τ 0.4 Φ 0.2 
QrU 1000 °C QsU 1000 °C δ1 20 

r 1.2 mm Rmax. 10.0 µm k1 1.0 
k2 1.0 k3 1.0 ttf 3.0 min. 
m 1.0 Kt 15 $/Tool Kp 2.0 $/min. 

 
Maintenance times and fixed costs to each produced part were considered as constants and ignored for the calculus 

of Eq. 1 and 2, because they do not influence in the choice of the value of the cutting parameters. The software used to 
solve non-linear programming was GAMS/BARON/CPLEX. All equations were included in the mathematical model 
(including rough and finish turning bounds) calculation of production time and the objective function which in this 
model is to reduce costs.  

A part/component extracted from Saravanan et al. (2005) was used to analyze the three optimization techniques and 
to compare the results. The time to machine this part was calculated using Eq. 10, 11, 12, 13, and 14. Figure 1 shows 
the component used for the tests. 
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Figure 1. Component used to test the three optimization techniques (Saravanan et al., 2005) 
 
Using a Pentium IV PC with 2.4 GHz and 2 GB of RAM memory, GAMS/BARON/CPLEX software took 0.31 

seconds to solve the non-linear mathematical programming, while SA was performed within 2 seconds and GA was 
solved within 87 seconds. The results obtained using simulated annealing, genetic algorithms, and mathematical 
programming are in Tab. 4. Firstly, it is possible to identify that SA was outperformed by the two other approaches, 
both in the best solution found, average cost (when mathematical programming seems to have always converged to the 
optimal solution), and computational time. This is an indication that there are so-called “global optimization software” 
(Neumaier, 2009) which are able to deal with non-linear mathematical programming problems.  

The results using mathematical programming and GA indicate that it is not possible to select the best approach. 
Many works in the literature try to point to the “best” approach without a statistical background, as in (Saravanan et al., 
2003) and in Saravanan et al. (2005). Analysis of Variance (ANOVA) was used to check the hypothesis that there is no 
significant difference among the average of all treatments (or approaches) (Montgomery, 1991). With the use of 
ANOVA and repeating each treatment 20 times, it was not possible to refuse this hypothesis. That is, due to the 
variance (or standard deviation) of the results, there will be a superposition of the normal curves for all these two 
approaches. 
  

Table 4. Results obtained using simulated annealing, genetic algorithms and mathematical programming. 
 

Optimization 
Technique 

Minimum 
Cost K [$] 

Average Cost 
K [$] 

vcr 
[m/min.] 

vcs 
[m/min.] 

fr 
[mm/min.] 

fs 
[mm/min.] 

apr 
[mm] 

aps 
[mm]

Tt  
[min.]

SA (α=0.9 and 
no re-heating) 16.53 55.54 ± 36.6 140.0 140.0 0.90 0.56 1.0 1.0 7.22 

SA (α=0.9 and 
with re-heating) 22.59 38.39 ± 6.85 164.0 206.2 0.76 0.72 1.0 1.0 7.3 

SA (α=0.99 and 
no re-heating) 18,65 40.38 ± 9.68 146.0 152.61 0.79 0.51 1.0 1.0 7.68 

SA (α=0.99 and 
with re-heating) 16.53 38.16 ± 6.08 140.0 140.0 0.90 0.56 1.0 1.0 7.22 

GA 12.62 13.97 ± 2.19 148.7 157.8 1.0 0.84 1.0 1.0 5.1 

Mathematical 
Programming 12.62 12.62 ± 0 148.7 157.8 1.0 0.84 1.0 1.0 5.1 

 
5. CONCLUSION AND DISCUSSIONS  
 

This paper is part of two ongoing M.Sc. degree works which studies the optimization of cutting parameters at 
turning operations. Three different approaches have been tested – mathematical programming, simulated annealing 
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(SA), and genetic algorithms (GA). The goal was to analyze the behavior of SA and GA (originally presented by 
Saravanan et al. (2003; 2005)), comparing their results to a mathematical programming approach. As part of an ongoing 
research, SA has been tested with different cooling factors and with the possibility of performing re-heating. There was 
an effort to use only data extracted from Saravanan et al. (2005) in order to compare results, but there was not enough 
data to repeat their work. Therefore, data has been collected from different sources. The results indicate that SA was 
outperformed by mathematical programming and GA. But the standard deviation on SA and GA indicate that there is 
room for improvements on both heuristic approaches.  

As another future work, the fact that Saravanan et al. (2003; 2005) used minimization of production costs as their 
objective function suggests that this work can be extended to the maximization of production on flexible manufacturing 
cells (FMC). In order to accomplish this, it is necessary to use minimization of production times as the objective 
function. With the minimum time to manufacture each part in each machine it is possible to optimize the sequence of 
the lot production, looking to reduce the time of idle machines, reducing, thereby, the global time of the production 
cycle. Using the GANTT diagram it is possible to find where the times of idle machines are.  

Cutting out completely the machine idleness is ideal to reduce the production time of the lot. However, this is very 
difficult to happen in practice. The idleness in manufacturing can be “filled” by increasing the production time of the 
parts at the idle times of the machines. That is, if it is not possible to eliminate idleness, it is possible to seek production 
cost reduction at idle machines. At idle times of machines, the reduction on cutting speed, feed rate, and depth of cut 
will increase the time to remove material, but the cutting tool consumption will also be reduced and, consequently, the 
manufacturing costs will tend to become smaller. Therefore whenever there is machine idleness it will be important to 
seek costs reduction. Optimization of FMC operation is also proposed as a future work. 
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