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Abstract. The main purpose of the present work is to carry out a topological sensitivity analysis in constitutive multi-scale
models. The derivation of the proposed sensitivity relies on the concept of topological derivative, applied within a vari-
ational multi-scale constitutive framework where the macroscopic variables at each point of the macroscopic continuum
are defined as volume averages of their microscopic counterparts over a Representative Volume Element (RVE) of mate-
rial associated with that point. As a fundamental result of the topological sensitivity analyses carried out, tensorial fields
were identified that represent the topological derivative of the macroscopic constitutive tensor when a singular pertur-
bation is introduced at the micro-scale. The components of such tensorial fields depend on the solution of the canonical
variational problems associated to the original unperturbed domain. In particular, in this work, several classical compu-
tational modeling problems are addressed within the proposed framework, such as, stationary heat conduction problem,
linear elasticity and fracture solid mechanics. The final format of the proposed analytical formulas are strikingly simple
and can be potentially used in applications such as the synthesis and optimal design of microstructures to meet a specified
macroscopic behavior.
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1. Introduction

Composite materials have become one of the most important classes of engineering materials. In a broad sense, one
can argue that much of material science is about improving macroscopic material properties by means of topological and
shape changes at a microstructural level. In this context, the ability to accurately predict the macroscopic mechanical
behavior from the corresponding microscopic properties as well as its sensitivity to changes in microstructure becomes
essential in the analysis and potential purpose-design and optimisation of heterogeneous media. Such concepts have been
successfully used, for instance, in Sigmund (1994); Silva et al. (1997) and Kikuchi et al. (1998) by means of a relaxation-
based technique in the design of periodic microstructural topologies. This paper proposes a general exact analytical
expression for the topological sensitivity of the two-dimensional macroscopic elasticity tensor to topological changes
of the microstructure of the underlying material. The macroscopic linear elastic response is estimated by means of a
well-established homogenisation-based multi-scale constitutive theory for elasticity problems, see the works by Germain
et al. (1983) and Michel et al. (1999), where the macroscopic strain and stress tensors at each point of the macroscopic
continuum are defined as the volume averages of their microscopic counterparts over a Representative Volume Element
(RVE) of material associated with that point. The proposed sensitivity is a symmetric fourth order tensor field over the
RVE that measures how the macroscopic elasticity parameters estimated within the multi-scale framework changes when
a small circular inclusion is introduced at the micro-scale. Its analytical formula is derived by making use of the concepts
of topological asymptotic expansion and topological derivative, Sokołowski and Żochowski (1999) and Céa et al. (2000),
within a variational formulation of the adopted multi-scale theory. The final format of the proposed analytical formula is
strikingly simple and can be potentially used in applications such as the synthesis and optimal design of microstructures
to meet a specified macroscopic behavior.

The paper is organised as follows. The multi-scale constitutive framework adopted in the estimation of the macroscopic
elasticity tensor is briefly described in Section 2. The main contribution of the paper is presented in Section 3. Here, an
overview of the topological derivative concept is given. Finally, some concluding remarks are made in Section 4.

2. Multi-scale modelling

In this section we briefly describe the multi-scale constitutive model for classical elasticity problems which allows
estimating the macroscopic elasticity tensor using a homogenisation-based variational framework with the complete de-
scription of a local Representative Volume Element (RVE) of material. This constitutive modelling approach follows
closely the strategy presented, among others, by Germain et al. (1983), Miehe et al. (1999) and Michel et al. (1999) – and
whose variational structure is described in detail in de Souza Neto and Feijóo (2006). In this context, the main concept
is the assumption that any point x of the macroscopic continuum (refer to Fig. 1) is associated to a local RVE whose
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Figure 1. Macroscopic continuum with a locally attached microstructure.

domain Ωµ, with smooth boundary ∂Ωµ, has characteristic length lµ, much smaller than the characteristic length l of
the macro-continuum domain, Ω. For simplicity, we consider that the RVE domain consist of a matrix, Ωm

µ , containing
inclusions of different materials occupying a domain Ωi

µ (see Fig.1), but the formulation is completely analogous to the
one presented here if the RVE contains voids instead.

Using the concept of homogenization we define the macroscopic strain tensor E at a point x of the macroscopic
continuum as the volume average of its microscopic counterpart Eµ over the domain of the RVE:

E :=
1
Vµ

∫

Ωµ

Eµ, (1)

where Vµ is a total volume of the RVE and

Eµ := ∇suµ, (2)

with uµ denoting the microscopic displacement field of the RVE. Tacking into account the Green’s Theorem in definitions
(2) and (1) we obtain the following equivalent expression for the homogenized (macroscopic) strain tensor E

E =
1
Vµ

∫

∂Ωµ

uµ ⊗s n, (3)

where n is the outward unit normal to the boundary ∂Ωµ and ⊗s denotes the symmetric tensor product of vectors.
Now, without loss of generality, it is possible split uµ into a sum

uµ (y) = u + ū (y) + ũµ (y) , (4)

of a constant (rigid) RVE displacement coinciding with the macro displacement u, a field ū (y) := Ey, and a fluctuation
displacement field ũµ(y). With the above split, the microscopic strain field (2) can be written as a sum

Eµ = E + Ẽµ, (5)

of a homogeneous strain (uniform over the RVE) coinciding with the macroscopic strain E and a field Ẽµ corresponding
to a fluctuation of the microscopic strain about the homogenised (average) value.

2.1 Admissible and virtual microscopic displacement fields

Naturally, assumptions (1) and (2) places a constraint on the admissible displacement fields of the RVE. These condi-
tions can be expressed by requiring the set Kµ of kinematically admissible displacements of the RVE to satisfy

Kµ ⊂ K∗µ :=

{
v ∈ [

H1(Ωµ)
]2

:
∫

Ωµ

v = Vµu ,

∫

∂Ωµ

v ⊗s n = Vµ E, JvK = 0 on ∂Ωi
µ

}
, (6)

where K∗µ is the minimally constrained set of kinematically admissible RVE displacement fields and JvK denotes the jump
of function v across the matrix/inclusion interface ∂Ωi

µ, defined as

[[(·)]] := (·)|m − (·)|i , (7)
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with subscripts m and i associated, respectively, with quantity values on the matrix and inclusion.
The split presented in (4), allows to express constraint (6), without loss of generality, by requiring that the space K̃µ

of admissible displacement fluctuations of the RVE be a subspace of the minimally constrained space of displacement
fluctuations, K̃∗µ:

K̃µ ⊂ K̃∗µ :=

{
v ∈ [

H1(Ωµ)
]2

:
∫

Ωµ

v = 0,

∫

∂Ωµ

v ⊗s n = 0, [[v]] = 0 on ∂Ωi
µ

}
. (8)

Then, we have that the space of virtual displacement of the RVE can be defined as

Vµ :=
{

η ∈ [
H1(Ωµ)

]2
: η = v1 − v2; ∀v1,v2 ∈ Kµ

}
, (9)

coinciding with the space of microscopic displacement fluctuations, i.e., Vµ = K̃µ.

2.2 Macroscopic stress and the Hill-Mandel Principle

In the same way that the macroscopic strain tensor (1), the macroscopic stress tensor T, is defined as the volume
average of the microscopic stress field Tµ over the RVE, i.e.,

T :=
1
Vµ

∫

Ωµ

Tµ. (10)

In order to introduce the Hill-Mandel Principle of Macro-Homogeneity ( Hill (1965) and Mandel (1971)) let us con-
sider a generic RVE with body force field bµ = bµ(y) in Ωµ and an external traction field qµ = qµ(y) on ∂Ωµ. That
principle establishes that the power of the macroscopic stress tensor at an arbitrary point of the macro-continuum must be
equal to the volume average of the power of the microscopic stress over the RVE associated with that point for any kine-
matically admissible motion of the RVE. In view of the Hill-Mandel principle, we have that the body force and external
traction fields of the RVE belong to the functional space orthogonal to the chosen Vµ – they are reactions to the constraints
imposed upon the possible displacement fields of the RVE. That is, the body force bµ and the external traction qµ must
satisfy the variational equations, see de Souza Neto and Feijóo (2006),

∫

Ωµ

bµ · η = 0 and
∫

∂Ωµ

qµ · η = 0 ∀η ∈ Vµ. (11)

2.3 The RVE mechanical equilibrium problem

For this work, materials that satisfy the classical linear elastic constitutive law will be used to describe the behaviour
of the RVE matrix and inclusions. That is, the microscopic stress tensor field Tµ satisfies

Tµ = CµEµ, (12)

where Cµ is the fourth order elasticity tensor, for isotropic and homogeneous materials, defined as:

Cµ =
E

1− ν2
[(1− ν) I+ ν (I⊗ I)] , (13)

with E and ν denoting, respectively, the Young’s moduli and the Poisson’s ratio of the domain Ωµ. These parameters are
given by

E :=
{

Em if y ∈ Ωm
µ

Ei if y ∈ Ωi
µ

and ν :=
{

νm if y ∈ Ωm
µ

νi if y ∈ Ωi
µ

. (14)

If the RVE has more than one inclusion, the parameters Ei and νi are piecewise constant. In addition, in eq.(13), we
use I and I to denote the second and fourth order identity tensors, respectively.

The linearity of (12) together with the additive decomposition (5), allows the microscopic stress field to be split as

Tµ = T̄µ + T̃µ, (15)

where T̄µ is the microscopic stress field associated with the uniform strain induced by ū (y), i.e., T̄µ = CµE, and T̃µ is
the microscopic stress fluctuation field associated with ũµ (y), i.e., T̃µ = CµẼµ.

In view of expressions (11), (12) and (15), we have that the RVE mechanical equilibrium problem consists of finding,
for a given macroscopic strain E, an admissible microscopic displacement fluctuation field ũµ ∈ Vµ, such that

∫

Ωµ

T̃µ · ∇sη = −
∫

Ωµ

T̄µ · ∇sη ∀η ∈ Vµ, with T̃µ = Cµ∇sũµ. (16)
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2.4 Classes of multi-scale constitutive models

The characterisation of a multi-scale model of the present type is completed with the choice of a suitable space of
kinematically admissible displacement fluctuations Vµ ⊂ K̃∗µ. We list below three classical possible choices:

• Linear boundary displacement model. For this class of models the choice is

Vµ = VLµ :=
{
ũµ ∈ K̃∗µ : ũµ (y) = 0 ∀y ∈ ∂Ωµ

}
. (17)

The only possible reactive body force over Ωµ orthogonal to VLµ is bµ = 0. On ∂Ωµ, the resulting reactive external

traction, qµ ∈
(VLµ

)⊥
, may be any function.

• Periodic boundary fluctuations model. The space of displacement fluctuations is defined as

Vµ = VPµ :=
{
ũµ ∈ K̃∗µ : ũµ(y+) = ũµ(y−) ∀pair (y+, y−) ∈ ∂Ωµ

}
. (18)

Again, only the zero body force field is orthogonal to the chosen space of fluctuations. In order to satisfy (11)2 the
external traction fields must be anti-periodic, i.e.,

qµ(y+) = −qµ(y−) ∀pair (y+, y−) ∈ ∂Ωµ. (19)

• Minimally constrained or Uniform RVE boundary traction model. In this case, we chose,

Vµ = VUµ := K̃∗µ. (20)

Again only the zero body force field is orthogonal to the chosen space. The boundary traction orthogonal to the
space of fluctuations satisfy the uniform boundary traction condition, de Souza Neto and Feijóo (2006):

qµ (y) = Tn (y) ∀y ∈ ∂Ωµ, (21)

where T is the macroscopic stress tensor defined in (10).

2.5 The homogenised elasticity tensor

In the constitutive multi-scale model introduced in the previous sections, was presented how use the macroscopic
information (strain tensor E) to obtain the microscopic displacement field uµ. However, using the same concepts it is
possible to obtain a closed form of the macroscopic constitutive response, in our case, the homogenized elasticity tensor
C. This methodology was suggested by Michel et al. (1999) and is based on re-write the problem (16) as a superposition
of linear problems associated with the individual Cartesian components of the macroscopic strain tensor. Then, the
macroscopic (homogenized) tensor C can be written as a sum

C = C̄+ C̃, (22)

of an homogenized (volume average) macroscopic elasticity tensor C̄, given by

C̄ =
1
Vµ

∫

Ωµ

Cµ, (23)

and a contribution C̃ associated to the choice of space Vµ, defined as:

C̃ :=

[
1
Vµ

∫

Ωµ

(T̃µkl
)ij

]
(ei ⊗ ej ⊗ ek ⊗ el) , (24)

where T̃µij = Cµ∇sũµij is the fluctuation stress field associated with the fluctuation displacement field ũµij , being the
vector fields ũµij ∈ Vµ the solutions of the linear variational equations

∫

Ωµ

Cµ∇sũµij · ∇sη = −
∫

Ωµ

Cµ(ei ⊗ ej) · ∇sη ∀η ∈ Vµ, (25)

for i, j = 1, 2 (in the two-dimensional case). In the above expressions the elements {ei} are the orthonormal basis of the
two-dimensional Euclidean space. For a more detailed description on the derivation of expressions (22 – 25) we refer the
reader to Michel et al. (1999); de Souza Neto and Feijóo (2006) and Giusti et al. (2009).
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Figure 2. Microstructure perturbed with a inclusion Iε.

3. The topological sensitivity of the homogenised elasticity tensor

The main result of this paper – a closed formula for the sensitivity of the homogenised elasticity tensor (22) to the
introduction of a circular inclusion centered at an arbitrary point of the RVE domain is presented in this section. To
this end, let ψ be a functional that depends on a given domain and let it have sufficient regularity so that the following
expansion is possible

ψ (ε) = ψ (0) + f (ε) DT ψ + o (f (ε)) , (26)

where ψ(0) is the functional evaluated in the original domain and ψ(ε) denotes the functional for a topologically perturbed
domain. The parameter ε defines the size of the topological perturbation, so that the original domain is retrieved when
ε=0. In addition, f(ε) is a regularising function defined such that f(ε) → 0 with ε → 0+ and o (f (ε)) contains all terms
of higher order in f(ε). The term DT ψ of (26) is defined as the topological derivative of ψ at the unperturbed (original)
RVE domain. The concept of topological derivative was rigorously introduced by Sokołowski and Żochowski (1999).
Since then, the notion of topological derivative has proved extremely useful in the treatment of a wide range of problems
in mechanics, optimisation, inverse analysis and image processing and has become a subject of intensive research.

3.1 Application to the multi-scale elasticity model

To begin the topological sensitivity analysis, it is appropriate to define the following functional

ψ(ε) := VµTε ·E, ⇒ ψ(0) = VµT ·E, (27)

where Tε denotes the macroscopic stress tensor associated with a RVE topologically perturbed by a small inclusion of
radius ε defined by Iε and T is the macroscopic stress tensor associated to the unperturbed domain Ωµ. More precisely,
the perturbed domain is obtained when a circular hole Hε of radius ε is introduced at an arbitrary point ŷ ∈ Ωµ. Next,
this region is replaced with the circular inclusion Iε with different material. Then, the perturbed domain is defined as
Ωµε

= (Ωµ\Hε) ∪ Iε (refer to Fig. 2). Thus, the asymptotic topological expansion of the functional (27)1 reads

Tε ·E = T ·E +
1
Vµ

f (ε)DT ψ + o (f (ε)) . (28)

Our purpose here is to derive the closed formula for the topological sensitivity of the macroscopic elasticity tensor
(22). Then, we start deriving a closed formula for the associated topological derivative DT ψ, which characterizes the
asymptotic expansion (28). To this end, we write the shape functional ψ(ε) in terms of the microscopic strain and stress
tensors as:

ψ(ε) := JΩµε
(uµε) =

∫

Ωµε

Tµε · ∇suµε , (29)

where Tµε is the microscopic stress field associated to perturbed domain Ωµε . Analogously to the presented in the
previous section, the stress tensor field Tµε is defined as

Tµε = C∗µEµε , (30)

with Eµε =∇suµε denoting the microscopic strain field in Ωµε and the constitutive fourth order tensor C∗µ, for γ ∈ R+,
is given by

C∗µ =
{
Cµ ∀y ∈ Ωµ\Hε

γCµ ∀y ∈ Iε
. (31)

Particularly, the microscopic displacement field uµε ∈Kµε :={v ∈ Kµ : [[v]] = 0 on ∂Iε}, associated to the perturbed
RVE, is decomposed as

uµε = u + Ey + ũµε , (32)
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where the fluctuation displacement field ũµε
is the solution of the variational problem for the perturbed domain Ωµε

: find
ũµε ∈ Vµε := {ξ ∈ Vµ : [[ξ]] = 0 on ∂Iε} such that:

∫

Ωµε

T̃µε
· ∇sηε = −

∫

Ωµε

T̄∗µ · ∇sηε ∀ηε ∈ Vµε
, with T̃µε

= C∗µ∇sũµε
, (33)

where Vµε
is the space of kinematically admissible displacement fluctuations of the perturbed RVE and T̄∗µ is the micro-

scopic stress field, associated to Ωµε , induced by the macroscopic strain E, i.e., T̄∗µ = C∗µE.
For the calculation of the topological derivative, we shall adopt the approach presented by Novotny et al. (2003),

whereby the topological derivative is obtained as

DT ψ = lim
ε→0

1
f ′ (ε)

d

dε
JΩµε

(uµε) . (34)

The derivative of the functional JΩµε
(uµε

) with respect to the perturbation parameter ε can be seen as the sensitivity
of JΩµε

, in the classical sense, to the change in shape produced by a uniform expansion of the inclusion Iε. Then, the
shape derivative of the functional JΩµε

(uµε
) results exclusively in terms of a integral over the boundary ∂Iε of the

inclusion (Giusti et al. (2008); de Faria et al. (2009)):

d

dε
JΩµε

(uµε
) = −

∫

∂Iε

JΣµεKn · n. (35)

In order to derive an explicit expression for the integrand on the right hand side of (35), we consider a curvilinear
coordinate system along ∂Iε, characterised by the orthonormal vectors n and t. Then, we can decompose the stress
tensor Tµε and the strain tensor Eµε on the boundary ∂Iε as follows

Tµε |∂Iε = Tnn
µε

(n⊗ n) + Tnt
µε

(n⊗ t) + Ttn
µε

(t⊗ n) + Ttt
µε

(t⊗ t) ,
Eµε |∂Iε = Enn

µε
(n⊗ n) + Ent

µε
(n⊗ t) + Etn

µε
(t⊗ n) + Ett

µε
(t⊗ t) .

(36)

Using decomposition (36)1, note that the Neumann boundary condition along ∂Iε gives

[[T̃µε ]]n|∂Iε = −[[T̄∗µ]]n ⇒ [[Tµε ]]n|∂Iε = 0, (37)

⇒ Tnn
µε
|m = Tnn

µε
|i and Ttn

µε
|m = Tnn

µε
|i on ∂Iε. (38)

Similarly to eq. (36), the fluctuation displacement field ũµε can be decomposed on ∂Iε as

ũµε |∂Iε = ũn
µε

n + ũt
µε

t. (39)

Therefore, the continuity condition of ũµε along ∂Iε implies

[[ũµε ]]|∂Iε = 0 ⇒ ∂ũµε

∂t

∣∣∣∣
m

=
∂ũµε

∂t

∣∣∣∣
i

on ∂Iε. (40)

Alternatively, the above condition can be written in terms of the components, in the base n–t, of the fluctuation strain
tensor Ẽµε as follows

Ẽtt
µε
|m = Ẽtt

µε
|i, ⇒ Ett

µε
|m = Ett

µε
|i. (41)

Tacking into account the decompositions (36) and (39), and the continuity condition (38), (40) and (41), the jump of
the Eshelby tensor flux in the normal direction through of the boundary of the perturbation Iε can be written as

[[Σµε ]]n · n =
q
Ttt

µε

y
Ett

µε
|i −

q
Ẽnn

µε

y
Tnn

µε
|i −

s
∂ũt

µε

∂n

{
Tnt

µε
|i. (42)

Observe that, using the constitutive law given by eq. (30), the jump terms to the right of the above expressions satisfy
q
Ttt

µε

y
= E(1− γ)Ett

µε
|i, (43)

q
Ẽnn

µε

y
=

1− ν2

E

(
γ − 1

γ
T̃nn

µε
|i −

q
T̄nn

µ

y)
, (44)

s
∂ũt

µε

∂n

{
= 2

1− ν

E

(
γ − 1

γ
T̃tn

µε
|i −

q
T̄tn

µ

y)
, (45)
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where T̄nn
µ , T̄tn

µ , T̃nn
µε

and T̃tn
µε

are the constant and fluctuation part of components Tnn
µε

and Ttn
µε

, respectively, of the
stress tensor Tµε |∂Iε , eq.(36)1.

Therefore, introducing the above results into (42) and tacking into account the additive decomposition of the com-
ponents of the microscopic stress field Tµε , the jump of the Eshelby tensor flux in the normal direction through of the
boundary ∂Iε satisfy the following representation in terms of the solution inside of the perturbation Iε:

[[Σµε ]]n · n =
1− γ

γ2E

[(
Ttt

µε
|i − νTnn

µε
|i
)2 + γ(1− ν2)Tnn

µε
|2i + 2γ(1 + ν)Ttn

µε
|2i

]
. (46)

In order to obtain an analytical formula for the boundary integral (35) we make use of the classical asymptotic analysis
for the two-dimensional elasticity problems, see Little (1973). Thus, the distribution of the microscopic stress field on
boundary ∂Iε is written as

Tµε |∂Iε = LT̄µ + ST̃µ +O(ε), (47)

with O(ε) → 0 as ε → 0 and the fourth order tensors L and S are given by

L = γ
1− γ

1 + αγ

[
1 + α

1− γ
I+

β − α

2(1 + βγ)
(I⊗ I)

]
, S =

γ

(1 + αγ)(1 + ν)

{
4I+

[
β(1 + αγ)

1 + βγ
− 2

]
(I⊗ I)

}
, (48)

being that the constants α and β are defined as

α =
3− ν

1 + ν
and β =

1 + ν

1− ν
. (49)

With the stress distribution along the boundary ∂Iε, shown in eq. (47), and the result (46), it is possible to obtain the
topological derivative evaluating analytically the boundary integral (35). In fact,

∫

∂Iε

[[Σµε ]]n · n =
2πε

E

(
1− γ

1 + αγ

) [
4Tµ ·Tµ +

γ(α− 2β)− 1
1 + βγ

(trTµ)2
]

+ o(ε). (50)

Substituting the previous result in (34) and adopting the function f(ε) as th size of the circular perturbation, finally, we
obtain the explicit closed form expression for the topological derivative of ψ:

DT ψ = −HTµ ·Tµ, with H :=
1
E

(
1− γ

1 + αγ

) [
4I+

γ(α− 2β)− 1
1 + βγ

(I⊗ I)
]

. (51)

3.2 The sensitivity of the macroscopic elasticity tensor

With the result of the topological sensitivity analysis at hand, eq.(51), we have the explicit expression for the topolog-
ical asymptotic expansion of ψ:

Tε ·E = T ·E− v(ε)HTµ ·Tµ + o(v(ε)), (52)

where v(ε) := πε2/Vµ is the RVE volume fraction occupied by the perturbation.
The concepts used in Section 2.5, in order to write a closed expression for the macroscopic constitutive tensor C, can

be easily extended to derive a analytical formulae for the topological sensitivity of the elasticity tensor. In this sense, we
write the microscopic strain and stress as a linear combination of the Cartesian components of the macroscopic strain as:

Eµ = (E)ij

(
ei ⊗ ej + Ẽµij

)
= (E)ij Eµij , ⇒ Tµ = (E)ij CµEµij = (Tµij ⊗ ei ⊗ ej)E, (53)

where Tµij denotes the microspic stress field associated with each displacement fluctuation field ũµij , solutions of the
set of variational equations (25).

Tacking into account the above expressions, we see that the topological derivative of ψ given by (51) can be represented
as (with i, j, k, l = 1, 2)

DT ψ = −DTµE ·E, with DTµ = HTµij ·Tµkl
(ei ⊗ ej ⊗ ek ⊗ el). (54)

From (52), (54)2 and assuming a linear elastic constitutive response for the macroscopic stress tensor, we have that
the explicit expression for the topological expansion of the macroscopic elasticity tensor satisfies:

Cε = C− v(ε)DTµ + o(v(ε)). (55)

The topological sensitivity tensor (54)2 provides a first order accurate measure of how the macroscopic elasticity
tensor varies when a topological perturbation is added to the RVE. Each Cartesian component (DTµ)ijkl represents the
derivative of the component ijkl of the macroscopic elasticity tensor with respect to the volume fraction v(ε) of a circular
inclusion of radius ε inserted at an arbitrary point y of the RVE. The remarkable simplicity of the closed form sensitivity
given by (54)2 is to be noted. Once the vector fields ũµij have been obtained as solutions of (25) for the original RVE
domain, the sensitivity tensor DTµcan be trivially assembled.
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Remark 1 The topological derivative tensor DTµ have a explicit dependency with the contrast parameter γ. Then,
through the tensor H, its possible analyse the limit cases of the topological sensitivity tensor, wich are:

– Hole (γ → 0):

H =
1
E

[4I− (I⊗ I)], (56)

– Rigid inclusion (γ →∞):

H = − 1
Eα

[
4I+

α− 2β

β
(I⊗ I)

]
. (57)

Note that, the result of the final expression (54)2 for the case (γ → 0) coincides with the result derivated in Giusti et al.
(2009) for topological perturbation characterized by a small circular hole instead of an inclusion.

4. Conclusions

By making use the concept of topological derivative, applied within a variational multi-scale constitutive model for
linear elasticity, an analytical formula for the sensitivity of the two-dimensional macroscopic elasticity tensor has been
proposed in this work. The used multi-scale constitutive framework is based on the assumption that the macroscopic
strain and stress tensor at each point of the macroscopic continuum are defined as volume averages of their microscopic
counterparts over a Representative Volume Element of material associated with that point. The adopted model for the
estimation of the macroscopic response allows different predictions of macroscopic behavior to be obtained according to
the constraints imposed upon the chosen functional space displacement fluctuations of the RVE. The derived sensitivity –
a symmetric fourth order tensor field over the RVE domain – measures how the estimated macroscopic elasticity tensor
changes when a small circular inclusion is introduced at the micro-scale. The formula presented here can be potentially
used in a number of applications of practical interest such as, for instance, the design and optimization of microstructures
to achieve a specified macroscopic behavior. Finally, it is worth emphasizing that this methodology makes possible that
the topological derivative for a vast class of shape functionals to be promptly obtained.
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