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Abstract. The wake interference of a transversely oscillating circular cylinder placed near and parallel to a ground is 

investigated by numerical calculations using vortex particles. To investigate the wake interference, two plane wall 

configurations are considered: with and without the influence of the ground boundary layer. When the plane wall is 

running at the same speed as the freestream no boundary layer develops to interfere with the cylinder. The amplitude 

of the oscillatory motion is considered to be small compared to the cylinder diameter, therefore, to the first 

approximation, one is allowed to transfer the body boundary condition from the actual position to a mean position of 

the body surface. Our results for aerodynamic loads and Strouhal number are presented and discussed. 
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1. INTRODUCTION 

 

Understanding oscillation of bluff bodies relative to an incident fluid flow is of great importance in the design of a 

variety of engineering problems. In particular, oscillatory motions of small amplitude are important in the analysis of an 

immerse vibrating body and special care should be taken in the lock-in condition. The problem described can be 

compared with many engineering situations where it is possible verify changes in the velocity field around a body thus a 

surface localized near the neighborhood. An automobile near the ground and an aircraft landing or taking off are 

examples of this phenomenon. 

For a better and easy understanding of the physics, therefore, it is reasonable to focus our attention on the flow 

around bodies of simple geometry. One of the most investigated vortex-induced vibrations is that the flow around an 

oscillating circular cylinder; it is known that the vortex shedding frequency f had been found to lock-in to the forcing 

frequency fb when fb is close to the free vortex shedding frequency fso in the transverse oscillating case. But, the in-line 
vibration lock-in takes place at a number of multiple ratios of fb/fso, especially, at fb/fso =2.0, where the lift and drag 

forces increase greatly. Comprehensive reviews can be found in Koopman (1967), Sarpkaya (1979), Bearman (1984), 

Blevins (1990), Griffin and Hall (1991), Williamson and Govardhan (2004) and Hirata et al. (2008). 

On the other hand, the fluid flow around a fixed circular cylinder close to a plane wall is governed not only by the 

Reynolds number but also by the gap between the cylinder and the ground, h,  characterized by the gap ratio h/d (d is 

cylinder diameter). The fundamental effects of gap ratio have been observed e.g. by Taneda (1965), Roshko et al. 

(1975), Bearman and Zdravkovich (1978), Angrilli et al. (1982), Grass et al. (1984), Zdravkovich (1985a), Price et al. 

(2002) and Lin et al. (2005). 

However, the influence of the boundary layer formed on the ground is much more complicated and is still unclear 

despite several intensive studies reported so far. Roshko et al. (1975) measured the time-averaged drag and lift 

coefficients, CD and CL, for a circular cylinder placed near a fixed wall in a wind tunnel at Re=2.0×104, which lies in the 
upper-subcritical flow regime, and showed that the CD rapidly decreased and CL increased as the cylinder came close to 

the wall. Zdravkovich (1985b) observed, in his force measurements performed at 4.8×104 < Re < 3.0×105, that the rapid 

decrease in drag occurred as the gap was reduced to less than the thickness of the boundary layer /d on the ground, and 

concluded that the variation of CD was dominated by  h/ rather than by the conventional gap ratio h/d. He also noted 
that the CL could be significantly affected by the state of the boundary layer, although it was insensitive to the thickness 

of the boundary layer. 

Zdravkovich (2003) reported the drag behavior for cylinder placed near a moving ground running at the same speed 

as the freestream for higher Reynolds number of 2.5×105, which lies within the critical flow regime rather than the 

subcritical flow regime. The experiment by Zdravkovich (2003) showed contrast to all the above studies. First, 

practically no boundary layer on the ground. Second, the decrease in drag due the decrease in h/d did not occur in his 

measurements. The differences encountered were attributed to the non-existence of the wall boundary layer or the 

higher Reynolds number. Nishino (2007) presented experimental results of a circular cylinder with an aspect ratio of 

8.33, with and without end-plates, placed near and parallel to a moving ground, on which substantially no boundary 
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layer developed to interface with the cylinder. Measurements were carried out at two upper-subcritical Reynolds 

numbers of 0.4 and 1.0×105. The results produced new insights into the physics of ground effect, and could serve as a 

database for both experimental and computational studies on the ground effect in the future. According to Nishino 

(2007) experiments, for the cylinder with end-plates, on which the oil flow patterns were observed to be essentially two-

dimensional, the drag rapidly decrease as h/d decrease to less than 1.0 but became constant for h/d of less than 0.35, 

unlike that usually observed near a fixed ground (as will be plotted later in “Fig. 2a”). 

Vortex method offer a number of advantages over the more traditional Eulerian schemes for the numerical analysis 

of the external flow that develops in a large domain; the main reasons are [Sarpkaya (1989), Lewis (1999), Kamemoto 

(2004), Alcântara Pereira et al. (2004) and Hirata et al. (2008)]: (i) as a fully mesh-less scheme, no grid is necessary; 

(ii) the computational efforts are directed only to the regions with non-zero vorticity and not to all the domain points as 

is done in the Eulerian formulations; (iii) the far away downstream boundary condition is taken care automatically 
which is relevant for the simulation of the flow around a bluff body (or an oscillating body) that has a wide viscous 

wake. 

Moura (2007) studied numerically the two-dimensional, incompressible unsteady flow around a circular cylinder 

near a fixed ground using the vortex method. The body was animate by a forced frequency. He investigated the 

influence of the heave movement with small amplitude on the aerodynamic loads of the cylinder placed near a fixed 

ground. 

In a recent work, Bimbato (2008) used the vortex method to study the aerodynamic loads acting on a circular 

cylinder surface placed near a ground running at the same speed as the incident flow in which the vorticity was generate 

only from the body surface. The results agree with that presented by Nishino (2007) when the end-plates were used. 

In this paper, the vortex method is used to simulate the viscous flow around an oscillating circular cylinder in 

ground effect. Two plane wall configurations are considered: fixed ground and moving ground. In all the numerical 
experiments the Reynolds number is kept in high value, Re=1.0x105. Even with such a high Reynolds number value, no 

attempt for turbulence modeling were made once these aspects have a strong three-dimensional component; see 

Alcântara Pereira et al. (2004). 

 

2. PROBLEM FORMULATION AND VORTEX METHOD 

 

Consider the incompressible flow of a Newtonian fluid in a large two-dimensional domain around a circular 

cylinder which moves with constant velocity U in ground effect. An oscillatory motion with finite amplitude A and 

constant angular velocity  is added to body as shown in Fig. 1. In this figure the (x, o, y) is the inertial frame of 
reference and the (ξ, o, η) is the coordinate system fixed to the cylinder; the inertial frame oscillates around the x-axis as 

y0=Acos(t), where =2fb and fb is the body oscillation frequency. 

The boundary S of the fluid domain  is 3S2S1SS  ; being 3S  the far away boundary, which can be viewed 

as 
2

y
2

xr , and 1S the body surface and 2S the fixed ground plane surface. 

The vorticity that develops in the body boundary layer is carried out downstream into the viscous wake. Due to the 
no-slip condition, a shear flow is set on the fixed ground. As consequence, there is vorticity generated on the fixed 

ground and the body wake will be influenced by the presence of the plane wall wake, as can be seen in Fig. 1. A ground 

running at the same speed as the freestream, however, does not allow the development of boundary layer. 

 

 
Figure 1.  Definitions. 

 

When the body is represented by a circular cylinder: 
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The mean position of circular cylinder surface is defined as 

 

  0Rycxyx,F:S
2

0
2

c
2
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For symmetric body 

 

0φ(ξ)ηy)(x,F c1               (5) 

 

where φ(ξ) indicate the body thickness. 

 

The ground plane surface S2 is defined as 

 

 x,hy                (6) 

 

The viscous and incompressible flow is governed by the continuity and the Navier-Stokes equations, which can be 

written in the form   
 

0 u          (7) 

 

uuu
u 2

Re

1
p

t





           (8) 

 

where u  (u, v) is the velocity vector. As can be seen the equations are no-dimensionalized in terms of U and 

d (cylinder diameter: d = 2R). The Reynolds number is defined by 
 



Ud
Re          (8a) 

 

where   is the fluid kinematics viscosity coefficient; the dimensionless time is d / U . 

On the body and ground plane surfaces the adherence condition has to be satisfied. This condition is better specified 
in terms of the normal and tangential components as 

 

)()( nvnu   on 1S and 2S , the impenetrability condition        (9a) 

 

)()( τvτu   on 1S and 2S , the no-slip condition for fixed ground case       (9b) 

 

)()( τvτu   on 1S , the no-slip condition for moving ground case       (9c) 

 

Here n and  are unit normal and tangential vectors and v is the surfaces velocity: 1S and 2S . It is worth to mention 

the necessity of imposing the impermeability condition on the surface of the moving ground. 

Far from the surfaces 1S and 2S one assumes that the perturbation due to the oscillating body fades away, that is 

 

 1u at 3S        (10) 
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Is considered an small amplitude around the axis x, therefore 
 

)ε(O
2R

A
 , where   0 and  = O (1)       (11) 

 

Thus, the boundary conditions on 1S are written directly in the inertial frame of reference as 

 

 t)y,(x,nvt)y,(x,nu   on 1S , the impenetrability condition     (12a) 

 

 t)y,(x,τvt)y,(x,τu   on 1S , the no-slip condition     (12b) 

 

The transference of the boundary conditions on 1S from actual position to the mean position is defined as 
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The dynamics of the fluid motion, governed by the above boundary-value problem, can be alternatively studied by 

taking the curl of Eq. (8), obtaining the well-known 2-D vorticity transport equation   
 




 2

Re

1

t
u      (14) 

 

where   is the only non-zero component of the vorticity vector  = u. 

According to the convection-diffusion splitting algorithm (Chorin, 1973) it is assumed that in the same time 
increment the convection and the diffusion of the vorticity can be independently handled and are governed by  

 

0
t



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u      (15) 
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Once the vorticity field is modeled by a cloud of discrete vortices, the convection Eq. (15) is written in Lagrangian 

form as 

 

)t,(
dt

d
j

j
xu

x


  
j = 1, NV                                                                           (15a) 

 

where NV is the number of point vortices in the cloud and the velocity field u(x,t) can be split in three parts (Hirata et 

al., 2008) 

 

)t,()t,()t,()t,( xuvxubxuixu            (17) 

 

The contribution of the incident flow is represented by ui (x,t). For an uniform oncoming flow its components take 

the form 

 

1ui1   and 0ui2                            (18) 
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The body contributes with ub(x,t), which can be obtained, for example, using the Boundary Element Method. 

The fluid velocity on the circular cylinder surface is written as 
 

jiu (t)0yUt);η,ξ(


 ; with  t)λAcos(
dt

d
(t)0y 


        (19) 

 

As a consequence of the j component of the right hand side of the fluid velocity (in the above expression) one gets 

an additional singularities distribution on the body surface. Of course, the induced velocity due to this additional 

singularities distribution fades away from the body. 

The velocity induced by the body, according to the Panels Method calculations (Katz and Plotkin, 1991), is 
indicated by [uc(ξ,η), vc(ξ,η)]; this is the velocity induced at the vortex (i), located at the point [x(t), y(t)], thus 

 

t);η,ξuc(t)y;(x,
(i)

uc       (17a) 

 

t);η,ξvc(t)y;(x,
(i)

vc       (17b) 

 

where the following relations remains 

 

ξ(t)
(i)

x       (18a) 

 

η(t)0y(t)
(i)

y       (18b) 

 
The process of vorticity generation is carried out from Eq. (9b), so as to satisfy the no-slip condition. According to 

the discussion above the Panels Method guaranties that the impermeability condition is satisfied in each straight-line 

element, or panel, at pivotal point. At each instant of the time 2M new vortices are created a small distance  of the 
body and fixed ground plane surfaces, whose strengths are determined from Eq. (9b) applied at 2M point’s right below 

the newly created vortices, along the radial direction. This procedure yields an algebraic system of 2M equations and 

2M unknowns (the strengths of the vortices). When using moving ground, this procedure yields an algebraic system of 

M equations and M unknowns. 

The vorticity field is discretized and represented by a cloud of discrete Lamb vortices, whose mathematical 

expression for the induced velocity of the k-th vortex with strength k in the circumferential direction
k

u  is (Mustto 

et al., 1998) 
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where 0  is core radius of the Lamb vortex. 

In this particular equation r  is the radial distance between the vortex center and the point in the flow field where 

the induced velocity is calculated. 

Each vortex particle distributed in the flow field is followed during numerical simulation according to the Euler 
first-order formula 

 

       ttutttz z      (20) 

 

in which z is the position of a particle, t  is the time increment and   is the random walk displacement with a zero 

mean and a (2t/Re) variance. According to Lewis (1999), the random walk displacement is given by 
 

    Q2isinQ2cos
P

1
tln4β 








      (21) 

 

where 1Reβ  ; P and Q are random numbers between 0.0 and 1.0. 

The pressure calculation starts with the Bernoulli function, defined as 
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In the present approach the following integral formulation (Shintani and Akamatsu, 1994) is defined 
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where  is 1.0 inside the flow (at domain ) and is 0.5 on the boundaries 1S  and 2S .   1
i Rlog21G  is the 

fundamental solution of Laplace equation, R being the distance from i-th vortex element to the field point. It is worth to 

observe that this formulation is specially suited for a Lagrangian scheme because it utilizes the velocity and vorticity 

field defined at the position of the vortices in the cloud. Therefore it does not require any additional calculation at mesh 

points. Numerically, Eq. (23) is solved by mean of a set of simultaneous equations for pressure iY . 

Details of the present numerical method are presented in Moura (2007) and Bimbato (2008). 

 
 

3. RESULTS AND DISCUSSIONS 

 

We preliminary investigate the flow around an isolated circular cylinder to analyze the consistence of the vortex 

code and to define some numerical parameters, as for example the number of panels used to define the cylinder surface. 

For this particular configuration, each cylinder and ground surface were represented by M=100 flat source panels with 

constant density. The simulation was performed up to 1000 time steps with magnitude t=0.05 (Mustto et al., 1998). 

During each time step the new vortex elements are shedding into the cloud through a displacement =0=0.001d normal 
to the straight-line elements (panels); see Ricci (2002). 

Table 1 shows that the numerical results agree very well with the experimental ones obtained by Blevins (1984), 

which have an uncertainty of about 10%. The results from Mustto et al. (1998) were obtained numerically using a 

slightly different vortex method from the present implementation. The agreement between the two numerical methods is 

very good for the Strouhal number, and both results are close to the experimental value. The present drag coefficient 

shows a higher value as compared to the experimental result. One should observe, that the three-dimensional effects are 

non-negligible for the Reynolds number used in the present simulation (Re = 1.0×105). Therefore one can expect that a 
two-dimensional computation of such a flow must produce higher values for the drag coefficient. On the other hand, the 

Strouhal number is insensitive to these three-dimensional effects. The mean numerical lift coefficient, although very 

small, is not zero which is due to numerical approximations. The aerodynamic forces computations were evaluated 

between t=30 and t=50. 

 

Table 1. Mean values of drag and lift coefficients and Strouhal number of an isolated circular cylinder 

5101.0Re   DC  LC  St  

Blevins (1984) 1.20 - 0.19 

Mustto et al. (1998) 1.22 - 0.22 

Present Simulation 1.22 0.04 0.19 

 

The Strouhal number is defined as 
 

U

d f
St       (24) 

 

where f is the detachment frequency of vortices of the lift coefficient. In general, one should observe that the lift 

coefficient oscillates with a dimensionless frequency (Strouhal number) that is one half the frequency of oscillation of 

the drag coefficient curve. More details of this preliminary study are discussed in Hirata et al. (2008). 

In this paper, the body Strouhal number is defined as 

 

U

df
St

b
b              (25) 
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Figure 2 shows the behavior of drag and lift coefficients for circular cylinder at different values of the gap-ratio h/d 

and for different end conditions. The present numerical results are referred as “moving ground” and as “fixed ground” 

in Fig. 2. Columns 5 and 6 of Tab. 2 present our numerical values for drag coefficient of a fixed circular cylinder. 

 

  
(a) Drag force (b) Lift force 

Figure 2. Time-averaged drag and lift coefficients vs. gap ratio for different end conditions 

 

Nishino (2007) investigated two flow configurations: one was essentially three-dimensional and another 

approximately two-dimensional; this second configuration was obtained by using end-plates on the cylinder extremity. 

It was shown that the drag coefficient on the 3-D flow increased slightly as the cylinder comes close to the ground, 

while the 2-D flow presented a higher drag coefficient. 
 

Table 2. Summary of results for drag coefficient on the flow around fixed circular cylinder near a plane boundary 

dh  Nishino (2007) 

without end-

plates 

Nishino (2007) 

with end-plates 

Roshko et al. 

(1975) 

Present 

simulation:  

moving ground 

Present 

simulation: 

fixed ground 

0.00 - - 0.795 - - 

0.05 0.965 - 0.857 1.154 1.809 

0.10 0.958 - - 0.832 - 

0.15 0.952 - 0.954 1.293 1.656 

0.20 0.939 - - 1.376 - 

0.25 0.933 - 1.029 1.406 1.440 

0.30 0.930 - - 1.393 - 

0.35 0.931 - - 1.415 - 

0.40 0.922 - 1.136 1.421 1.365 

0.45 0.926 1.311 - 1.403 1.453 

0.50 0.924 1.323 - 1.391 1.491 

0.60 0.920 1.373 1.281 1.383 1.466 

0.80 0.899 1.385 - 1.362 1.410 

0.90 - - 1.266 - - 

1.00 0.881 1.375 - 1.346 1.385 

1.50 0.854 1.337 - 1.277 1.346 

2.00 0.845 1.304 - 1.269 - 

3.00 - - 1.234 - - 

 

The present simulations using moving ground reproduce the situation studied by Nishino (2007) with end-plates. 

One can see that the drag coefficient results of the 2-D numerical simulation agree well with the experimental results 

approximately 2-D from Nishino (2007). It is worth to observe that in this situation, due to the experimental difficulties, 

he was not able to perform the tests for small-gap regime (h/d<0.45).  

As illustration, Tab. 3 present all the cases studied of vortex shedding from a transversely oscillating circular 

cylinder in ground effect for h/d=0.45. For these cases the effect of increase of the cylinder oscillation frequency is 
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investigated for a small amplitude A/d=0.05. We observe here that the lock-in feature is not identified; for instance, case 

V in Tab. 3 (fixed ground) had vortex-shedding frequency tS =0.21, whereas the forcing frequency is tbS =0.14. 
 

 

Table 3. Circular cylinder: Results of CL, CD and Strouhal; h/d = 0.45, Re = 1.0x105 and A/d= 0. 05 

Case  Fixed ground Moving ground 

tbS  
LC  DC  tS  LC  DC  tS  

I 0.016 -0.114 1,437 0.19 -0.108 1.416 0.20 

II 0.008 -0.087 1.409 0.20 -0.061 1.411 0.20 

III 0.063 -0.125 1.399 0.20 -0.085 1.427 0.20 

IV 0.110 -0.107 1.444 0.20 -0.055 1.319 0.21 

V 0.140 -0.103 1.363 0.21 0.001 1.356 0.16 

 

Figure 3 shows the time evolution of the aerodynamic forces acting on the oscillating circular cylinder surface 

placed near a fixed ground (see Fig. 3a) and near a moving ground (see Fig. 3b) using h/d = 0.45. In despite of 

proximity of the ground, the fluctuation of CD has still twice the frequency that the CL, this seems that it fluctuates once 
for each upper and lower shedding. The absolute values of the minimum and maximum of CL curves are more 

representative in Fig. 3(b). When the ground is fixed, one can observe that the CL curve has higher absolute value of the 

maximum than the absolute value of the maximum of the moving ground CL curve case. 

In the Fig. 3 are defined instants A, B, C, and D. At instant represented by the point A in Fig. 3a and Fig. 3b, one 

can identified a clockwise vortex structure detaching from the upper surface, see Fig. 4a and Fig. 4b. A low pressure 

zone on the upper side of the cylinder surface is developed, which explains the maximum CL value (Moura, 2007). 

 

 
(a) moving ground 

 
(b) fixed ground 

Figure 3. Time history of drag and lift coefficients; h/d = 0.45, Re = 1.0x105, tbS = 0.14 and A/d= 0. 05  

 

As shown in Fig. 5 and Fig. 6, at the same instant represented by the point A, one can identified a low pressure zone 

on the upper side of the fixed cylinder surface, which explains the maximum CL value again; as proceeds, at this 

moment a clockwise vortex structure is detaching from the upper surface; see Fig. 5a and Fig. 5b. 

 

 
(a) fixed ground ( tbS =0.14 and A/d= 0. 05) 

 
(b) moving ground ( tbS =0.14 and A/d= 0. 05) 

Figure 4. Position of the wake vortices at an instant represented by point A, Re=1.0x105 and h/d=0.45  
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(a) fixed ground ( tbS =0.0 and A/d= 0. 0) (b) moving ground ( tbS =0.0 and A/d= 0. 0) 

Figure 5. Near field velocity distribution at an instant represented by point A, Re=1.0x105 and h/d=0.45 

 

  
(a) fixed ground ( tbS =0.0 and A/d= 0. 0) (b) moving ground ( tbS =0.0 and A/d= 0. 0) 

Figure 6. Instantaneous pressure distribution for the fixed circular cylinder in ground effect, Re=1.0x105 and h/d=0.45 

 

4. CONCLUSIONS 

 
Our results are able to predict the main features of the flow around an oscillating body (although with a simple 

geometrical shape) in ground effect.  When using fixed ground and forcing frequency tbS =0.0, the absolute value of the 

maximum of the CD curve is bigger than the absolute value of the maximum of the moving ground CD curve; the wake 

interference is the one responsible for a “great” maximum value of the CD curve; see Bimbato (2008). In the present 

study, the wake interference was influenced by oscillatory motion. Our result for the oscillating circular cylinder case in 

ground effect no revealed estimative of the lock-in regime, and it needs further investigation for two cylinder 

configuration considered here. The experience gained with the present work allows us to analyze complex situations 
where relative motions between bodies are present. These extend the applicability of the vortex method code. Further 

analyses are necessary to understand the aerodynamic loads and vortex shedding behavior when the body is brought 

close to a plane wall. Future work will investigate the mechanisms of the heat transport from an oscillating heated 

cylinder in ground effect using two plane wall configurations (Recicar et al., 2008). 
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