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Abstract. Most processes in industry are characterized by nonlinear and time-varying behavior. In this context, the 
identification of mathematical models, typically nonlinear systems, is vital in many fields of engineering. A variety of 
system identification techniques are applied to model the processes dynamic. Recently, the identification of nonlinear 
systems by genetic programming (GP) approaches has been successfully applied in many applications. GP is a 
paradigm of evolutionary computation field based on a structure description method that applies the principles of 
natural evolution to optimization problems and its nature is a generalized hierarchy computer program description. 
GP adopts a tree structure code to describe an identification problem. Unlike the traditional approximation methods 
where the structure of an approximated model is fixed, the structure of the GP tree itself is modified and optimized and, 
thus, there is a possibility that GP trees could be more appropriate or accurate approximating models. This paper 
proposed a GP method combined with an orthogonal least squares (OLS) algorithm to estimate the contribution of the 
tree branches to the accuracy of the discrete polynomial NARX (Nonlinear AutoRegressive with eXogenous inputs) 
model. The nonlinear system identification procedure, based on a NARX representation and a GP optimization 
approach built on adaptive probabilities using chaotic sequences, is applied to the case study of an experimental 
poppet valve. Poppet valves are normally used in combustion engines to open and close the intake and exhaust ports 
on the cylinder head. The very well machined adjust between seat and poppet gives the sealing feature that is improved 
every time that the pressure inside the cylinder rises up pushing the valve head against its seat. The modeled device 
controls the amount of recirculated gases and it is used in the automotive industry to control the emissions levels on 
combustion engines. The identification results demonstrate that the GP with OLS is a promising technique for NARX 
modeling. 
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1. INTRODUCTION  

 
Developing models from observed data, or function learning, is a fundamental problem in engineering systems, such 

as control systems, supervision approaches and prediction methods. System identification is the procedure of 
constructing a mathematical model from input-output data for a dynamic system under testing and characterizing the 
system behaviors. The identification of dynamic nonlinear systems, which pose problems and require solutions distinct 
from their linear counterparts, is a hard task as demonstrated by the effort devoted by researchers in the last decades. 
Several techniques have been proposed for nonlinear system identification (Giannais and Serpedin, 2001; Billings, 
1980; Ljung, 2001; Haber and Unbehauen, 1990).  

In recent years, genetic programming (GP) (Lew et al., 2006; Beliagiannis et al., 2005; Yang, 2006; Zhang and 
Nandi, 2007), a member of the evolutionary computation field, has been applied to fault detection, modeling and 
identification of nonlinear systems. GP is a stochastic process for automatically generating computer programs and was 
introduced by Koza (1992), based on the idea of genetic algorithms. An advantage of GP is that it can evolve a solution 
automatically from the training data and does not require an assumption regarding the mathematical model, on the 
model’s structure or size of the decision tree-based solution.  

This paper investigates a GP method based on tuning procedure of crossover and mutation probabilities and an 
orthogonal least squares (OLS) algorithm to estimate the contribution of the branches of the tree to the accuracy of the 
discrete polynomial NARX (Nonlinear AutoRegressive with eXogenous inputs) model. The identification procedure 
using GP based on OLS for NARX nonlinear identification validated in this paper was inspired in Mádar et al. (2005) 
including the tuning procedure of crossover and mutation probabilities. 

To illustrate the power of the proposed GP methodology in NARX identification, the experimental data obtained of 
a poppet valve is considered. Poppet valves are normally used in combustion engines to open and close the intake and 
exhaust ports in the cylinder head. The very well machined adjust between seat and poppet gives the sealing feature that 
is improved every time that the pressure inside the cylinder rises up pushing the valve head against its seat. In this work, 
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a poppet valve, driven by an electrical motor is evaluated. This device is used in the automotive industry to control the 
emissions levels on combustion engines by controlling the gases recirculated.  

The remainder of this paper is organized as follows. In Section 2, the fundamentals of system identification are 
presented. The theoretical background of GP method is introduced in Section 3. Description of case study of a poppet 
valve and the identification results are both commented in Section 4. Finally, the conclusion and further research are 
discussed in Section 5. 
 
 
2. FUNDAMENTALS OF SYSTEM IDENTIFICATION 
 

Inferring mathematical models of dynamical systems from laboratory or field observations has always been a 
subject of interest in science and engineering. An important subdivision of this field addresses the identification of 
nonlinear systems, which pose problems and require solutions distinct from their linear counterparts. For linear system 
identification (Ljung, 1999; Schoukens and Pintelon, 1991), unique solutions normally exist for over determined 
problems where there are more equations than the unknown parameters and the error distribution of the extracted 
parameters usually can be calculated from the measured error.  

The linear mathematical model is useful if the underlying physical process exhibits qualitatively similar dynamic 
behavior to the linear model in the operating point of interest. However, it is often difficult to represent the behavior of 
the system on its full range of operation using linear mathematical models. For these reasons, there is current research 
interest in models for nonlinear identification. In this context, many system modeling and parameter identification 
techniques have been successfully proposed (see Giannais and Serpedin, 2001). 

Due to the nonlinear nature of many systems, this paper investigates a GP method combined with OLS algorithm to 
NARX modeling. In this context, the model identification adopted is summarized by the following steps: 
 
Step i) design an experiment to obtain the process input/output data sets pertinent to the model application 
 
Step ii) examine the quality of measured data, removing trends and outliers. 
 
Step iii) construct a set of candidate models based on information from the experimental data sets (or simulation data 
sets). This step is the model structure identification. 
 
Step iv) select a particular model from the set of candidate models and estimate the model parameter values using the 
experimental data sets (or simulation data sets). 
 
Step v) evaluate how good the model is using a performance criterion. 
 
Step vi) if a satisfactory model is still not obtained in Step v then repeat the procedure either for Step i or Step iii, 
depending on the problem. 

 
 

3. GENETIC PROGRAMMING 
 

Evolutionary Algorithms (EAs) are powerful tools used for solving difficult real-world problems. They have been 
developed in order to solve some problems that the classical (mathematical) methods failed to successfully tackle. Many 
of these unsolved problems are (or could be turned into) optimization problems. The solving of an optimization problem 
means finding solutions that maximize or minimize one or more criteria function (Goldberg, 1989). GP is an EA that 
produces functional programs to solve a given task. GP, introduced by Koza and his group (Koza, 1992; Koza, 1999; 
Koza, 2003), is popular for its ability to learn hidden relationships in data and express them automatically in a 
mathematical manner. GP has already spawned numerous interesting applications.  

In the GP paradigm, problems in systems identification field are viewed as the discovery of computer programs 
through a search process (global optimization) based on the rules of natural selection and natural genetics. Due to its 
population-based nature, GP approaches can avoid being trapped in a local optimum and consequently have the ability 
to find global suitable solutions. 

In GP, solutions to a problem can be represented in different forms, but are usually interpreted as computer 
programs. The computer programs represent candidate solutions to a problem. The typical structure of each individual 
can be seen as a tree-shaped structure to represent the individuals in the evolving population. Each candidate solution or 
individual of which has a fitness.  

The mentioned trees are typically encoded as S-expressions, the syntactic form in Lisp (LISt Processing language) 
programming language and the basic units of trees are called nodes. The GP procedure employs usually a context-free 
grammar declared in Backus-Naur-Form (BNF). The BNF-grammar consists of non-terminal nodes and terminal nodes 
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and is represented by the set {N, T, P, S}, where N is the set of non-terminals (function set), T is the set of terminals, P 
is the set of production rules and S is a member of N corresponding to the starting symbol [33]. 

The leaf nodes are input variables from the terminal set T, and internal nodes are operators from the function set F. 
Each candidate solution is built from combining all possible functions and terminals. The function set is the operators 
and functions such as arithmetic operators of addition, subtraction, multiplication, and division as well as a conditional 
branching operator. 

In general terms, the steps of a classical genetic programming approach can be summarized in the following steps: 
 

Step i) Initialization of candidate solutions: An initial population with candidate solutions (individuals) is generated. 
 
Step ii) Selection: The individuals that performed better in the evaluation process have more possibilities of being 
selected as parents for the new population than the rest. Tournament selection is adopted in order to select two parents. 
According to this strategy, two individuals among the current population are randomly selected, and the one with higher 
fitness win the right to mate. The process is repeated for the other parent.  
 
Step iii) Crossover: Two randomly chosen sub-trees of the two selected parents are exchanged to create two offspring. 
The crossover rate is pc.  
 
Step iv) Mutation: Nm duplicates of each offspring are created, and their terminal nodes mutate by replacing the original 
values with the neighbor values randomly selected from the component value set. The crossover rate is pm. 
 
Step v) Replacement: The fitness of the original offspring and their mutated versions are calculated to pick up the fittest 
one, which should replace the worst individual of the current population if the former is fitter than the latter. 
 
Step vi) Termination Criteria: If a maximum number of iterations, tmax, is reached, the process stops; otherwise, go to 
Step ii. 

 
The performance of GP is sensitive to the choice of control parameters. Choosing suitable parameter values is, 

frequently, a problem dependent task and requires previous user experience. Proper control parameters are 
recommended to some certain values to provide the algorithm better performance from the two aspects of effectiveness 
and efficiency according to the computational experiments.  Despite its crucial importance, there is no consistent 
methodology for determining the control parameters of an EA, which are, most of the time, arbitrarily set within some 
predefined ranges (Eiben et al., 1999). 

Two major forms of setting parameter values must be mentioned: parameter tuning and parameter control (Eiben et 
al., 1999). The former means the commonly practiced approach that tries to find good values for the parameters before 
running the algorithm, then tuning the algorithm using these values, which remain fixed during the run. The latter 
means that values for the parameters are changed during the run. 

In this paper, an adaptive setting of control parameters of crossover and mutation probabilities based on chaotic 
sequences in GP is provided. The application of chaotic sequences instead of random sequences in GP is an alternative 
strategy to diversify the population and improve the GP’s performance and other evolutionary algorithms in preventing 
premature convergence to local minima. One of the simplest dynamic systems evidencing chaotic behavior is the 
iterator called the logistic map (May, 1976), whose equation is given by: 
 

[ ])1(1)1()( −−⋅−⋅= tztztz µ                              (1) 

 
where t is the sample, and µ is a control parameter, 0 ≤ µ  ≤ 4. The behavior of the system of equation (5) is greatly 
changed with the variation of µ. The value of µ determines whether z stabilizes at a constant size, oscillates between a 
limited sequence of sizes or behaves chaotically in an unpredictable pattern. A very small difference in the initial value 
of z causes substantial differences in its long-time behavior. Equation (1) is deterministic, displaying chaotic dynamics 
when µ = 4 and z(1) ∉ {0, 0.25, 0.50, 0.75, 1} (Coelho and Mariani, 2006). In this case, x(t) is distributed in the range 
(0,1) providing the initial z(1) ∈ (0,1) and z(1) = 0.48, as was adopted here. In this case, the values of pc and pm in GP 
method based on chaotic sequences (CHGP) are modified using the equation (1). 
 
 
3.1. GENETIC PROGRAMMING FOR NARX IDENTIFICATION 
 

The GP can optimize both the model structure as well as its parameters in applications of identification mainly 
nonlinear identification. Among this class of models, the identification of discrete-time, NARX (nonlinear ARX) is 
considered in this paper. In the NARX model, the model regressors are input u(k) and output y(k) observations for the 
discrete time k. The NARX model is given by: 
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where )(ky  is system output for the time k, f is an unknown static nonlinear mapping, td is the delay time (dead time), 

nu and ny are the maximum and output lags (often referred to as model orders), respectively, while e(k) represents the 
modeling error and is assumed to be Gaussian noise. The above SISO (Single-Input Single Output) system 
representation can be assumed without a loss of generality since the extension to MISO (Multiple-Input Single-Output) 
and MIMO (Multiple-Input Multiple-Output) systems is straightforward. 

Letting ))(),...,1(),(),(),...,1(()(ˆ uy ndkudkudkunkykyfky −−−−−−−= , where )(ˆ ky  is predicted output for 

the time k, the NARX identification problem amounts to reconstructing the nonlinear mapping f(·): ℜ→ℜβ , β = nu + 
ny  form the set (y(k), u(k)), k = 1, 2,…, n (Nicolao and Trecate, 1999). Since the mentioned set provides a non-uniform 
and incomplete sampling of the domain of f, a generalization problem arises than can e solved by resorting to GP. 

Linear-in-parameters mathematical models can be formulated as: 
 

      ( ))()(
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where F1, ..., FM are nonlinear functions (they do not contain parameters), x(k) is the regressor vector that consists of 
lagged input(s) and output(s) given by )](),...,1(),(),(),...,1([)( uy ndkudkudkunkykykx −−−−−−−= , and p1, ..., 

pM are model parameters (Mádar et al., 2005). The problem of model structure selection for linear-in-parameters models 
is to find the proper set of nonlinear functions. 

There are a vast number of possible structures; hence, in practice, it is impossible to evaluate all of them. Even if the 
set of possible structures is restricted only to polynomial models given by (Mádar et al., 2005): 
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where p0 is a constant term. The construction of a NARX model consists of the selection of many structural parameters, 
which have significant effect to the performance of the designed model.  

The number of parameters (number of polynomial terms) is given by (Mádar et al., 2005): 
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Analytical resolution of parameter estimation problem of NARX is a complex task. The GP method combined with 

the OLS for the structure selection of NARX models that are linear-in-parameters is addressed in this context. 
Generally, GP creates nonlinear models in addition to linear-in-parameters models. To avoid nonlinear-in-parameters 
models, the parameters must be removed from the set of terminals; i.e., it contains only variables: T = {x1(k), ..., xm(k)}, 
where xi(k) denotes the ith regressor variable. During the operation of GP, the algorithm generates many potential 
solutions in the form of a tree structure. These trees may have terms (sub-trees) that contribute more or less to the 
accuracy of the model. In this context, the parameters are assigned to the model after “extraction” of the Fi function 
terms from the tree, and they are determined using the OLS (Korenberg et al., 1998) algorithm with the error reduction 
ratio (ERR) measure.  

 
 
4. DESCRIPTION OF CASE STUDY AND IDENTIFICATION RESULTS USING GP APPROACHES 
 

In this section, it turns to the description of poppet valve and analysis of the results obtained by the GP and CHGP 
approaches. 

 
4.1. System description 

 
In this work a device, called poppet valve, driven by an electrical motor is identified. Figure 1 shows the valve 

components and to ease the explanation the whole valve is split in: i) mechanism, ii) sensor, and iii) electrical motor. 
These components, details of signals acquisition, and setup of GP approaches for identification of poppet valve are 
described in the next subsections. 
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Figure 1. Components of the poppet valve. 

 
 
4.1.1. Valve mechanism 
 

The object valve concept is based on a poppet valve acted by gear train and an electric motor. The electric motor is 
attached to the first rotary axle and the latest rotary axle has a position sensor coupled. The gear train transforms the 
rotary movement into a linear movement by using a link that is similar to a connection rod. Figure 2 shows the valve 
mechanism sketch: 

 
Figure 2. Diagram of valve sketch. 

 
Maximum power and speed action will be set by the gear train ratio and by the motor construction.  The gas 

source is sealed by a conic poppet that moves linearly. The gas flow trough the valve is set by the cone angle, head 
diameter, cylindrical stem diameter and the poppet position related to the valve seat. Figure 3 shows the valve with full 
flow: 

 
 

Figure 3. Valve full flow. 
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4.1.2. Sensor 
 

The valve design has a position sensor coupled to the latest rotary axle in the gear train. This kind of assembly is 
used to avoid that the mechanical clearance, needed to a correct gear coupling, affects the control system. The applied 
sensor is a hall-effect sensor, based on magnetic field properties. A correct coupling is achieved when the valve travel is 
totally proportional to the sensor voltage. In order to check the coupling in real valves four new valve samples were 
tested. The applied method followed the steps: i) the valve is requested to be in ten percent of its total travel; ii) poppet 
absolute position is measured using a mechanical gauge and sensor feedback voltage is taken with a multimeter; iii) the 
requested position  is increased by ten percent and the last steps (ii) is performed again (forward operation); iv) the steps 
ii and iii are repeated until the valve reaches full travel; and v) all the steps are repeated for backward operation. 

All gathered data build up a table and the average was plot in a graph. Figure 4 shows the average values for sensor 
voltage and valve travel according to the requested position. In the Figure 4, two set of curves are presented. Upper 
curves are related to the sensor voltage. They show a little offset among the acquired values that is probably related to 
the sensor production tolerances. Lower curves are related to the valve travel and they show great linearity and also 
repeatability among the tested objects. 

The travel and the sensor correlation clarify that any control system used in this device should deal with a small 
non-proportionality between the signals. A control applied to this valve should also foresee a small difference between 
the forward and backward operation due lifetime against the increase of clearance caused by the normal friction during 
the gear engagement. 

 

 
Figure 4. Valve travel and sensor voltage. 

  
  
4.1.3. Electrical motor 
 

The electric motor is a common DC type with carbon brushes, driven by a PWM (Pulse Width Modulation) module 
in order to control the power and consequently the position forward or backward. 

To assure the correct system tuning is needed a better understanding on the motor behavior and its limits. A test took 
place in order to plot the motor power curve. A load cell (from 0 up to 3 KN) was used to determine the motor power. It 
was attached to the end of the poppet and the valve body was hold in the opposite side by a bracket leaving the poppet 
approximately 5 mm opened. The motor current was increased from 0 up to 3 Ampere and the strength measured by the 
load cell was recorded each 0.2 Ampere. There were tested three new valves and two used ones. The test room had the 
temperature stable on 20 ºC during the whole test procedure. The acquired value are presented in Figure 5. 
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Figure 5. Motor power curve. 

 
Analyzing the Figure 5, one can conclude that the saturation current is among 2.3 A. Despite the fact that the start 

power was a bit different among all test samples, the middle curve presents small differences between the different test 
objects.   

In the next subsections, the valve testing in open and closed-loop responses are presented and commented. 
 

4.2. Valve testing  
 
Some tests were performed to detect the system behavior and further model it.  
 

Open-Loop Step Response: The step response was recorded in an open-loop condition by supplying the motor with a 
Direct Current (DC) constant voltage and acquiring the feedback sensor signal. Figure 6 shows the open loop step 
response. It is clear that in an open loop condition the valve shown a dead time and afterwards a linear response. 

 

 
Figure 6. Open-loop step response. 

 
Closed-Loop Step Response: A closed loop acquisition was also performed using a proportional-integral (PI) controller 
with an anti-windup function and gain over the position error equal to 197.6. To decrease the measuring problems five 
brand new and six used valves were tested with the same procedure. An input step requesting 100% of the valve travel 
was made then the position feedback and current response were recorded. 

Figure 7 shows the curve for every tested valve regarding the position feedback and motor current consumption after 
the input step. Most of the valves had almost the same positioning behavior except two valves those had a position 
increasing much more linear than the other valves. It is possible to conclude that every valve asked a similar current 
pattern for the movement and the current level depended on the valve life. Used valves needed more current to make the 
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same movement as expected. The maximum continuous current for all samples stayed lower than ± 2.3 A that was 
pointed out as current saturation (see Figure 5). 
 

 
Figure 7. Closed-loop data. 

 
4.3. Data for system identification 
 

In order to avoid the control interferences on the system identification all the gains were made unitary and the 
integral action was disabled. The PRBS (Pseudorandom Binary Sequence) was chosen as input signal. Figure 8 presents 
the input and output signals for this data acquisition. These signals are used in identification procedure based on GP and 
CHGP approaches. 

0 100 200 300 400 500 600 700 800
-10

0

10

20

30

40

50

60

70

80

90

100

in
pu

t 
si

gn
al

sample
0 100 200 300 400 500 600 700 800

-20

0

20

40

60

80

100

120

140

po
pp

et
 v

al
ve

 o
ut

pu
t

sample
 

Figure 8. PRBS response. 
GP and CHGP approaches were implemented in MATLAB (MathWorks). All the programs were run under a 

Pentium dual-core processor with 1.73 GHz and 2 GB of Random Access Memory (RAM). In order to eliminate 
stochastic discrepancy, in each case study, 30 independent runs were made for each of the optimization methods 
involving 30 different initial trial solutions for the GP and CHGP approach.  

The parameters of the GP approaches are set as follows: population size is 30, generation gap = 0.8, selection 
adopted is the tournament with elitist strategy, the tournament size is equal to 6, the maximum number of generations is 
200, and the maximum allowed tree depth is 5. The design parameter adopted for the OLS algorithm is ERR = 0.01.  

The system identification by NARX model based on GP is appropriate if a performance index is in values 
permissible for the user’s needs.  In this case, the fitness function for maximization proposes is given by the multiple 

correlation index (also known as the R-squared coefficient) for the estimation (optimization) phase ( 2
estR  value) and 

validation (test) phase (2valR value). When the value 2R =1.0 (estimation or validation phases), it indicates the model’s 
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accurate approach to the system’s measured data. A 2R  value between 0.9 and 1.0 is considered sufficient for 
applications in identification and model-based controller design (Schaible et al., 1997).   

The first 400 samples of poppet valve system are used for the estimation phase, while the remaining 345 samples are 
used for the validation phase. The maximum input and output order selected for identification with GP and CHGP are td 
=1, nu = 4, and ny = 4. All of the numeric parameters in GP approaches design are determined empirically. 

The equation with best2estR  ( 2
estR  = 0.9996) for the NARX model obtained by CHGP approach in 30 runs was 

 

)4()1(000185.0                                           

)3(355320.0)2(563875.1)1(191029.1098800.0)(

−⋅−⋅
+−⋅+−⋅−−⋅+=

kuky

kykykyky
                                                   (6) 

 

The model of equation (6) presents an error mean to 745 samples equal to 0.0139 and2estR  = 0.9995. On other hand, 

the best model obtained by GP in 30 runs presented 2
estR  = 0.9991. It can conclude that a best solution found by CHGP 

has a slight advantage over the result of GP.  The best result of CHGP approach for the poppet valve is showed in 
Figure 9. 
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Figure 9. Best result of 2estR  for NARX modeling obtained by CHGP. 
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5. CONCLUSION AND FUTURE RESEARCH 
 

This paper focuses the application of two GP approaches combined with OLS algorithm for structure selection of a 
NARX model. The identification procedure based on GP and CHGP approaches and NARX model was validated to 
identify a poppet valve system. Results demonstrated that the CHGP method is a consistent estimator when applied to 
identification of NARX models. 

Future research is to investigate the performance of GP and CHGP approaches for solving optimization problems in 
model-based controllers design. 
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