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Abstract. An algorithm to simulate numerically three dimensional high compressible flows, with a spatial – time 

adaptive procedure is presented in this paper. The Finite Element Method (FEM) and an explicit one-step Taylor-

Galerkin scheme are used for space discretization and time integration, respectively. The numerical solution behavior 

is analyzed during the time marching process using several error indicators to map regions where physical phenomena 

presenting spatial high gradients take place and then an adaptive mesh procedure is applied to these regions to 

increase accuracy of the simulation. An explicit scheme applied to refined meshes can lead to excessive CPU time due 

to CFL stability constrains. Computational cost may be reduced using a multi-time integration technique with sub-

cycles. The capability and efficiency of the time-spatial adaptive procedures are compared with experimental data and 

with those obtained when a unique global time step is used. 
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1. INTRODUCTION 

 

The prediction of aerodynamic parameter for realistic configurations is essential in the assessment of performance of 

new designs. Accurate determination of aerodynamics is critical to the low-cost development of new system vehicle 

(aircraft and spacecraft). The demand to solve finely detailed models with realistic configurations for transonic and 

supersonic flows has challenged many researchers to come up with new and efficient tools. Specifically, adaptive 

methods for space discretization and time integration have demonstrated to be useful means to obtain efficient solutions 

of flow simulations. 

Mesh adaptation methods can be separated into three general techniques: r, h and p. In adaptive meshes using the r 

technique, the number of nodes in the computational domains remains fixed and are simply redistributed, so that regions 

with some specified characteristics are better solved. In h-refinement or mesh enrichment, nodes are added to regions of 

relatively large solution error by locally dividing the elements which make up the mesh or by embedding finer meshes 

in these regions. In adaptive meshes using the p adaptation method, the degree of the basis function is locally adjusted 

to match the variation in problem solution. Although the above methods were initially designed to be applied in a 

separate manner, the combination of such strategies may lead to very effective schemes. An adaptive mesh strategy, 

such as the h-refinement technique, which was adopted in this work, has the potential to give numerically accurate and 

computationally efficient solution, because the mesh is only locally adapted where it is necessary. 

Time integration may be performed in one of the two classical approaches, explicit or implicit techniques. Implicit 

methods are computationally more expensive in terms of computer memory, but they have less stringent stability 

bounds with respect to explicit schemes. Explicit methods are relatively simple to implement, and they are easily cast in 

a form suitable for efficient parallel codes, but they are limited by very small time steps due to the Courant-Friedricks-

Lewy (CFL) stability condition, which depends on the elements dimension. In many cases it is necessary to use a very 

small global time step due to the need to accurately capture some phenomena exhibiting high gradients in parts of the 

finite element domain (requiring very small elements) of one or more variables. 

To improve the performance of explicit schemes, specially in unsteady transient flows, an adaptive technique with 

sub-cycles to integrate in time may be used. Several mixed time integration methods have been implemented and they 

are based in previous work in the field of structural dynamics. These methods are efficient because they use different 

time steps in different parts of the mesh, adapted to the local physics or local numerical restrictions. Within the field of 

computational fluid dynamics (CFD) and in the context of the Finite Element Method (FEM) an early work was 
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developed by Löhner et al. (1984). In this work, the reduction in processing time was about 2 and 4 times for an 

inviscid two-dimensional problem with an explicit-explicit method (sometimes referred as a multi-time stepping 

technique using sub-cycles). Chang et al. (1993) proposed an implicit-explicit method for viscous and inviscid two-

dimensional problems, where the time adaptive algorithm was between 1.1 and 7.1 times faster than the algorithm 

which uses an unique global time step. In this kind of method, the implicit and explicit integration methods are 

combined in different parts of the mesh to obtain an optimal time integration scheme. Based on the work of Belytschko 

and Gilbertsen (1992), Teixeira and Awruch (2001) implemented the sub-cycles technique for inviscid compressible 

problems with tetrahedral elements. The algorithm had the possibility to control the time step using the same indicators 

of flow characteristics employed by Argyris et al. (1990) to adapt finite element meshes. The time step in the elements 

is reduced when the indicators identify possibilities of numerical instability or a significative accuracy loss of the 

solution.  

In this paper, results for two problems are presented to demonstrate the application of the unstructured mesh 

refinement and the adaptive time integration technique (which is applied here for a case characterized by a steady state 

solution). The space-time adaptive method shown in this work is an optimized version of the code employed by Bono et 

al. (2008). Results for transonic and supersonic flows are presented for a clipped delta wing and a canard-wing-body 

configuration, respectively, to demonstrate an application of the adaptive procedure in space and time and to assess the 

accuracy of the computed results by comparisons with experimental data, when they are available. 

 

2. NUMERICAL METHOD 

 

A numerical solution is obtained by solving the 3D unsteady compressible Euler/Navier-Stokes equations written in 

conservative form. An explicit one-step scheme is employed for solving the compressible inviscid/viscous flow 

problems. The one-step scheme is similar to that presented by Donea (1984). To develop the scheme, we consider a 

Taylor expansion of the unknown variables U(x,t) in time t = t 
n+1. Applying the classical Bubnov-Galerkin weighted 

residual method in the context of the finite element method (FEM), the spatial discretisation is obtained. This approach 

could be interpreted as the finite element version of the Lax-Wendroff scheme, used in finite differences. This time 

integration provides second-order accuracy in time. The formulation exclusively employs tetrahedral finite elements 

which provide second-order spatial accuracy. Linear unstructured finite elements is chosen due to its flexibility in 

creating mesh for complex geometries and exactly integrated without numerical quadrature. 

The consistent mass matrix is substituted by the lumped mass matrix and then these equations are solved with an 

explicit scheme. More details can be found in Bono (2008). The explicit character of the algorithm implies that it will 

be subjected to the Courant-Friedrichs-Lewy stability criterion. At supersonic speeds, an additional numerical damping 

is necessary to capture shocks and to smooth local oscillations in the vicinity of shocks. An artificial viscosity model, as 

proposed by Argyris et al. (1990), due to its simplicity and efficiency in terms of CPU time, is adopted here. 

 

3. THE ADAPTIVE PROCEDURE IN THE FINITE ELEMENT DOMAIN 

 

The unstructured mesh adaptation has the potential to give numerically accurate and computationally efficient 

solutions, because the mesh is only locally refined at the places of interest. An adaptive mesh strategy basically is 

characterized by error indicators, an adaptive criterion and a refinement scheme. 

Errors indicators are used to identify the characteristics and behavior of the numerical solutions in order to 

determine regions of the computational domain where a refinement process is necessary, looking for an accurate 

solution. In this work, these error indicators take into account regions with velocity gradients, pressure gradients and 

specific mass gradients. The criterion for mesh adaptation is based in the normal distribution of the error indicators and 

their mean values and standard deviation. The adaptive process was performed using the h-refinement method. 

Elements refined are divided in eight new elements; his type of refinement is defined as a regular refinement, and it is 

represented by 1:8. To close the refinement scheme and to avoid hanging nodes, it is necessary to perform irregular 

refinements in neighbour elements, represented by 1:2, 1:3 or 1:4. Elements having less than four edges divided by new 

nodes, created as a consequence of the adaptation scheme applied to their neighbour elements, are submitted to irregular 

refinements. However, if an element has four or more edges divided by new nodes, it is submitted to a regular 

refinement. In order to improve the geometric quality of the elements in the finite element mesh and to smooth the 

transition among elements of different size a smoothing technique with node re-allocations could be included. Details of 

the error indicators, mesh adaptation and the refinement process can be found in Popiolek and Awruch (2006). 

 

4. THE MULTI-TIME INTEGRATION TECHNIQUE USING SUB-CYCLES 

 

The adaptive technique to integrate in time the Euler and Navier-Stokes equations is very suitable for meshes having 

many groups of elements with different size and for problems where it is convenient to conserve the variable time with 

its real physical meaning. 

The adaptive procedure to integrate in time the governing equations can be summarized by the following steps: 
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1 – The procedure is initiated determining the critical time step for each element i (∆tEi) and the corresponding 

minimum value ∆tEmin is found. To each element is then addressed an integer multiple value nEi, which corresponds to 

the relation 

 

min

int
E i

E i

E

t
n

t

 ∆
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     with i = 1,…, nel (1) 

 

where nel is the total number of elements. 

2 – After the local time step has been determined for each element, the elements are collected into g groups based on 

their relative local time step 
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where ∆tg is the time step of the group g and 
g

Eit∆  is the time step of element i that belongs to group g. 

The time step ∆tN for each node N is computed considering the smallest time step corresponding to all elements e 

connected to node N. Then, the time step for each node is determined by 
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and belongs to nodal group gN which is the minimum value of the element groups ge of all elements connected to node 

N. 

3 – Finally, the time step for each element R
Eit∆  is re-evaluated considering the smallest time step corresponding to 

all nodes m belonging to this element. 

 

( )min
R

Ei Nm
m

t t∆ = ∆  (4) 

 

This re-evaluation address each element to a group g that is the smallest group of all nodes connected to the element. 

The adaptive method for time integration implemented here has three clocks: the first clock is assigned to the current 

time (time), the second is assigned to each node group (tN) and the third clock is assigned to each element group (tG). 

These clocks, when compared to the current time, indicate when a group of nodes or elements is ready to be updated. 

The current time is updated with the minimum time step ∆tEmin and each nodal or element group with its own time step 

∆tg. The initial value of all clocks is zero. 

When the current time clock reaches a node group clock or an element group clock, these clocks are updated. Each 

element group whose clock is equal to the current time tG = time is updated. After all elements groups have been 

updated, the nodal loop is executed. Each node group whose clock is equal the current time tN = time is updated. The 

nodal variables of all nodes belonging to groups whose tN > time are linearly interpolated to obtain values to this time, 

resulting in great reduction of the computational effort, and making that all variables are referred to the physical 

problem clock (time). 

The control time step or master time increment, which is taken as being equal to the largest time step in the element 

groups, determines when a cycle has been completed. At this time level, all variables are referred to the same time, 

without any interpolation. 

This updating procedure can be visualized easily with a simplified example represented in Figure 1. Consider a 

mesh which has five one-dimensional elements in three groups (g = 1, 2 and 3) with the following initial time step 1∆t, 

2∆t, 2∆t, 4∆t and 4∆t. Applying stages 1, 2 and 3, previously described, the following node and element groups are 

obtained: ∆tN = {1, 1, 2, 2, 4, 4} and ∆tG = {1, 1, 2, 2, 4}, respectively. It should be noted that the time step of the cycle 

is ∆tc = 4∆t. Considering the graphical representation in Figure 1, nodes are represented by solid diamonds, and 

elements by lines connecting the corresponding nodes. Time is represented by the vertical axis. The nodal time is 

represented by black circles and white circles represent the time where linear interpolation was used to obtain the nodal 

variables at the current time level. In the first integration step, Figure 1, the current time clock is t and the nodes and 

elements in all groups are updated with their corresponding time steps. Each group clock advances to different time 

levels. The current time clock advances to t+∆t and all nodes whose group clock is ahead this time level have their 

variables linearly interpolated. It should be noted that nodes 5 and 6 as well as element 5 need only one updating to 

complete the whole cycle because they are integrated with the maximum time step. In the integration step two, the 

current time clock is t+∆t, therefore only nodal and element groups with time step ∆t must be updated; for all other 

nodal groups interpolation is used. To update element 2, interpolated values of the variables of node 3 are necessary. In 

the third integration sub-cycle, the current time clock is t+2∆t, nodes 1 to 5 and elements 1 to 4 are updated. As before, 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

to update element 4 in group 2 interpolated values of the variables of node 5 are needed. Finally, time cycle is 

completed with the fourth and last sub-cycle, Figure 1. Only nodes and elements in group 1 are updated. 

 

 
 

Figure 1. Graphical representation of the sub-cycle method with three groups of elements 

 

The theoretical gain in CPU time (speed-up) using sub-cycles can be calculated by the expression developed by 

Belytschko and Gilbertsen (1992) 
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where tnsc and tsc are the time required to solve a problem with a global time step (without sub-cycles) and using multi-

time steps (with sub-cycles), respectively. The number de sub-cycles is NSC and the percentage of elements updated in 

the sub-cycle k is PESC. In this simplified example, fourth sub-cycles are required (NSC = 4) and the percentages of 

elements for groups g = 1, 2 and 3 are 40%, 40% and 20%, respectively. Therefore, the theoretical gain in CPU time is 

1.54. 

 

5. RESULTS 

 

The evaluation of the efficiency and performance of an adaptive refinement method and a sub-cycle technique is a 

complicated task due to the numerous aspects that must be considered. In what follows we try to address at least some 

of them with the help of classical three-dimensional problems in CFD, such as a clipped delta wing (CDW) in transonic 

flow and a canard-wing-body (CWB) configurations in supersonic flow. 

Comparisons are made with experimental and numerical data to determine the accuracy, the capability and the 

performance of the adaptive methodologies in space and time. 

 

5.1. Clipped Delta Wing (CDW) 

 

This wing has been studied experimentally by Bennett and Walker (1999). The wing is characterized by an aspect 

ratio equal to 1.242, a swept leading edge with 50.4 deg, an unswept trailing edge, and a taper ratio which is taken equal 

to 0.1423. The airfoil is thus a symmetrical circular arc section with t/C = 0.06. Case No. 9E15 corresponding to the 

reference mentioned above was numerically simulated, which is characterized by an inviscid flow at a free stream with 

Mach number equal to 0.901 and an angle of attack equal to 4.24 deg. The spatial domain is shown in Figure 2, being 

the dimensions R = R1 = 30, L = 55 and L1 = 15.5. The free stream conditions are given by the specific mass 1.0ρ∞ = , 

the total energy 2.1916e∞∞∞∞
====  and the  pressure 0.71428p∞ = . They were applied on the surface edges defined by AB 

and BDEF. In ACEF, symmetric boundary conditions were applied and the zero normal velocity condition was 

prescribed over the CDW. Finally, in CD a prescribed value for pressure 0.71428p∞ =  was applied, and no other 

boundary conditions were specified. 

The flow around the clipped delta wing was simulated with an initial mesh and with two successive mesh 

refinements, identified by R1 and R2, respectively. The meshes M1, M1R1 e M1R2 consisting of 76523, 273689 and 
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613017 elements, respectively. The adaptive mesh technique is employed with the following errors indicators: velocity, 

pressure and specific mass gradients. 

 
Figure 2. CDW computational domain 

 

In Figure 3, the surface pressure distributions obtained with the initial and final mesh are compared with 

experimental data obtained by Bennett and Walker (1999) for the case 9E15. Note that the upper shock is barely visible 

in the results obtained with the initial coarse mesh. As expected, considerable improvement in the resolution of the 

shocks can be observed when an adaptive mesh is employed. In general, the surface pressure distributions obtained with 

the final mesh M1R2 (two refinement levels) compare well to those obtained from experimental data, although some 

differences are observed on the leading edge. 

 

 

 
 

Figure 3. Comparisons of steady pressure coefficient distributions using initial and final meshes in the CDW 
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To demonstrate the advantages when adaptive procedures in space and time are combined, Figure 4 shows the 

pressure coefficient distributions on the upper surface of the clipped delta wing corresponding to the final mesh 

(M1R2). The results obtained with the sub-cycle technique to integrate in time were identified using the index sc. 

The surface pressure coefficients obtained without the adaptive procedure to integrate in time (using for all elements 

a global unique time step) compare well to those obtained including this technique, excepting small discrepancies that 

are evident near the leading edge region. These oscillations occur in regions of the mesh where there is an abrupt 

transition from a fine to a coarse mesh. 

 

 
 

Figure 4. Pressure coefficient distribution on the mesh M1R2 for test case 9E15 

 

In Table 1, the percentage of elements belonging to each element group, the theoretical speed-up and speed-up 

obtained are presented for the clipped delta wing problem. These results show that the sub-cycles technique in meshes 

M1, M1R1 and M1R2 are approximately 3.68, 5.77 and 8.22 times faster than cases where a unique global time step 

was adopted. 

 

Table 1. Percentage of elements belonging to each element group for the CDW. 

 

Group M1 M1R1 M1R2 

1 ∆t 0.21 0.09 0.06 

2 ∆t 0.50 0.20 0.04 

4 ∆t 19.91 8.45 2.13 

8 ∆t 56.25 49.29 21.71 

16 ∆t 11.94 20.03 30.91 

32 ∆t 5.56 10.03 17.76 

64 ∆t 1.10 4.50 12.40 

128 ∆t 0.37 1.10 4.45 

256 ∆t 4.17 6.31 10.53 

Theoretical Speed-Up 7.45 9.86 16.4 

Obtained Speed-Up 3.68 5.77 8.22 

 

The time steps distributions over the clipped delta wing on the final mesh, applying twice the refinement process, is 

shown in Figure 5. It should be noted that smaller time steps (1∆t and 2∆t) are localized in the leading and trailing 

edges. Larger time steps (4∆t to 16∆t) are located around the wing and more larger time steps (32∆t to 256∆t) are 

located relatively far from the wing. 

Finally, in Figure 6 the pressure coefficient distributions obtained with the time adaptive technique are compared 

with the distributions obtained without sub-cycles. Both cases agree well. However, in the tip of the wing, small 

discrepancies are evident when results obtained with sub-cycles are compared with those obtained without sub-cycles 

due to an abrupt transition from a fine to a coarse mesh. 

Differences between theoretical and real speed-up are due the fact that not all the computational work of the code is 

associated to elements loops, and mainly due to the loss of precision when using sub-cycles, demanding more iterations 

per time step than the solution with a global unique time step. 
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Figure 5. Time steps distributions on the mesh M1R2 for test case 9E15 

 

 
 

Figure 6. Graphical representation of the sub-cycle method with three groups of elements 

 

In order to estimate the loss of precision using sub-cycles with respect to results obtained with a global unique time 

step, the mesh M1 was analyzed with both alternatives. Time-steps of the different groups of nodes and elements could 

spread from the minimum value (1∆t) up to a specified limit value 2k, which is a multiple of ∆t and assuming that k is 

equal to 1,2,3,4 and 8. The specific mass residue of the solution at each time step, defined as 
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was calculated along the solution time, where t
iρ  and t t

iρ +∆  are the i
th values of variable at time t and t+∆t, 

respectively, and nno is total number of nodes in the mesh. As far the times steps spread from 1∆t, bigger is the value of 

convergence of the residue, indicating that less accurate results are obtained. 

Considering as a reference the numerical solution with a global unique time step, error of the solutions using sub-

cycles could be estimated. In Table 2(a), the average error of the  specific mass for solutions using sub-cycles with 

maximum time step varying from 2∆t to 256∆t, as well as the speed-up obtained in each case, are shown. The average 

error for specific mass of each node was estimated as 
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where SC
iρ  is the ith value of variable for the sub-cycle solution, 1 t

iρ ∆  is for the solution with a global unique time step. 

The average errors obtained can be considered low, and a significant reduction in the CPU time could be reached. 

Greater values of the relative errors may occur mainly where the nodal variables have very small values, and could be 

considered as a measure of the solution accuracy only in these specific regions of the domain, with little physical 

importance; as a global parameter, average error must be considered. 

In problems where the variable time has its real physical meaning (e.g. transient problems), the use of multi-time 

integration technique is useful to obtain values of the variables of problem at certain simulation time with considerable 

reduction in CPU time and acceptable errors from Engineering point of view. However, when considering steady state 

problems, an approximate solution with the same error levels of sub-cycles solutions may be obtained stopping the 

solution with global unique time step before its convergence is reached. Assuming the solution at 210000 ∆t as a 

reference solution, Table 2(b) shows the average errors obtained with the global unique time step solution stopped at a 

limited number of time steps, and the resultant speed-up in CPU time (calculated as a direct relation between then 

reference number of time steps and the number of time steps when the approximate solution was stopped). 

From the comparison of Tables 2(a) and 2(b), a solution using sub-cycles with time steps spread up to 256 ∆t can be 

considered equivalent in accuracy to the global unique time step solution stopped at 28500 ∆t, since both have similar 

average errors. Comparing the corresponding speed-ups, the last solution is approximately twice faster in CPU time, 

decreasing gradually for the other cases. 

 

Table 2. Error and speed-up from the use of (a) sub-cycles (SC) solution with time steps spreading up to a limited value, 

(b) global unique time step (GUTS) solution, stopping the analysis before the convergence is reached. CDW 

with mesh M1. 

 

(a) Sub-cycles solution (SC) (b) Global Unique Time Step solution 

(GUTS) 

Spread Average Error Speed-Up 

obtained 

Solution 

stopped at 

Average Error Speed-Up 

obtained 

up to1 ∆t ( = GUTS ) 0.0% 1.00 210000 ∆t 0.0% 1.00 

up to 2 ∆t 0.8% 1.36 98000 ∆t 0.5% 2.14 

up to 4 ∆t 1.6% 2.59 49000 ∆t 1.5% 4.29 

up to 8 ∆t 2.3% 3.28 28500 ∆t 2.4% 7.37 

up to 16 ∆t 2.5% 3.53 20500 ∆t 3.0% 10.24 

up to 256 ∆t 2.5% 3.68 16500 ∆t 3.4% 12.72 

 

5.2. Canard-Wing-Body Configuration 

 

Finally, a numerical investigation is carried out over a generic Canard-Wing-Body (CWB) configuration in 

supersonic flow. The geometry of this configuration is based on the experimental model employed by Jernell (1971). 

The CWB configuration could be compared with some supersonic transport vehicles, aerospace vehicles or a generic 

Unmanned Combat Air Vehicle (UCAV). In this study, the flow fields are computed with angles of attack equal to 0.0 

deg and 6.2 deg, with Mach and Reynolds numbers at the free stream equal to 4.63 and 1.0x105, respectively. 

As in the CDW problem, only an half of the CWB configuration is modeled and the domain is the same shown in 

Figure 2, substituting the CDW by the CWB, being the dimensions R = 20, R1 = 30, L = 55 and L1 = 15. The free 

stream conditions are: velocity (((( ))))cos ; sen ;0V M Mα α∞ ∞ ∞∞ ∞ ∞∞ ∞ ∞∞ ∞ ∞==== , specific mass 1.0ρ∞ = , total energy 12.5041e∞∞∞∞
====  and 

pressure 0.71428p∞ = . The inflow boundary conditions were applied in the plane defined by the edges AB and BDEF. 

In ACEF symmetric boundary conditions were applied and the non slip boundary condition was imposed over the CWB 

configuration. Finally, in CD no boundary conditions were prescribed. The values of the free stream conditions were 

taken as initial conditions and implemented in all the nodes in the domain, except in the nodes over the CWB 

configuration. 

The first simulations for both cases are performed using the same initial mesh (CWBns) consisting of 242979 linear 

tetrahedral elements and 45823 nodes. The adaptive mesh technique is employed in both cases with the following errors 

indicators: low velocity, changes in the velocity direction, velocity, pressure and specific mass gradients. The 

refinement process was applied only once and it was identified as R1. The meshes CWBns1R1 e CWBns2R1 consisting 

of 1172187 and 1445062 elements, respectively. 

The Mach number distribution over the CWB configuration for different stations (from xb/L=0.1 to 1.2, with steps 

equal to 0.1) and for the adapted mesh in the symmetric plane are shown in Figure 7 for both angles of attack. The flow 

field surrounding the CWB configuration is extremely complex, and some features such as multiple vortices influencing 

the CWB Mach number distribution are observed for an angle of attack equal to 6.2 deg. Flow over the delta wing at 
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low and moderate angles of attacks is dominated by two large, counter-rotating leading-edge vortices that are formed by 

the roll-up of vortex sheets and are carried downstream by the longitudinal component of the free stream velocity. 

 

 

 
 

Figure 7. Mach number distribution over a CWB configuration 

 

It should be observed that elements are concentrated in regions where the physical phenomena present high 

gradients and low velocity. In the fore-body region the results does not present a good resolution because the mesh does 

not provide a good transition between the different element dimensions. 

For CWBns2R1 case, it is observed, two small vortices on the upper wing (the first one between the vertical 

stabilizer / body and the second on the outside of the wing). The cross-flow separation and roll-up of the shear layer into 

a strong primary vortex on the leeward-side of the body is clearly evident. 

In Table 3, the percentage of elements belonging to each element group, the theoretical speed-up and speed-up 

obtained are presented for the canard-wing-body configuration. These results show that the sub-cycles technique in 

meshes CWBns1R1 and CWBns2R1 are approximately 1.77 and 2.09 times faster than cases where a unique global 

time step was adopted. 

 

6. CONCLUSIONS 

 

The aim of this work is to provide a study of an algorithm which combines an automatic adaptive strategy in space 

and an explicit time integration in the solution of aerodynamic problems. The adaptation method in space is tested here 

for steady three-dimensional transonic and supersonic flows. A sub-cycle multi-time integration technique is also 

applied and the consequent accuracy loss is evaluated. 

Results in the previous section show that the adaptive technique in space and time can be used for practical 

applications. Error indicators, together with a mesh adaptation criterion identify correctly regions where element 

refinements are necessary to obtain more accurate solutions, producing important improvements.  

Multi-time stepping using sub-cycles is a fast and efficient procedure and it is easy to implement. The algorithm is 

stable and can lead to high values of speed-up when compared to the usual global unique time step approach. For steady 

state problems, similar speed-ups, with the same accuracy levels may be obtained using sub-cycles or stopping the 
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problem simulation with a global unique time step before the convergence is reached. In future works the multi-time 

scheme with sub-cycles will be applied to transient flows, exploring possible important advantages. 

 

Table 3. Percentage of elements belonging to each element group for the CWB. 

 

Group CWBns1R1 CWBns2R1 

1 ∆t 2.63 0.50 

2 ∆t 46.98 20.15 

4 ∆t 33.59 53.35 

8 ∆t 8.65 15.36 

16 ∆t 3.35 5.20 

32 ∆t 2.25 2.23 

64 ∆t 0.84 1.52 

128 ∆t 1.71 1.69 

Theoretical Speed-Up 2.78 3.80 

Obtained Speed-Up 1.77 2.09 
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